Handbook of Mathematics, Physics and Astronomy Data

Handbook of Mathematics, Physics and Astronomy Data

Handbook of Mathematics, Physics and Astronomy Data School of Chemical and Physical Sciences c 2017 Contents 1 Reference Data 1 1.1 PhysicalConstants ............................... .... 2 1.2 AstrophysicalQuantities. ....... 3 1.3 PeriodicTable ................................... 4 1.4 ElectronConfigurationsoftheElements . ......... 5 1.5 GreekAlphabetandSIPrefixes. ..... 6 2 Mathematics 7 2.1 MathematicalConstantsandNotation . ........ 8 2.2 Algebra ......................................... 9 2.3 TrigonometricalIdentities . ........ 10 2.4 HyperbolicFunctions. ..... 12 2.5 Differentiation .................................. 13 2.6 StandardDerivatives. ..... 14 2.7 Integration ..................................... 15 2.8 StandardIndefiniteIntegrals . ....... 16 2.9 DefiniteIntegrals ................................ 18 2.10 CurvilinearCoordinateSystems. ......... 19 2.11 VectorsandVectorAlgebra . ...... 22 2.12ComplexNumbers ................................. 25 2.13Series ......................................... 27 2.14 OrdinaryDifferentialEquations . ......... 30 2.15 PartialDifferentiation . ....... 33 2.16 PartialDifferentialEquations . ......... 35 2.17 DeterminantsandMatrices . ...... 36 2.18VectorCalculus................................. 39 2.19FourierSeries .................................. 42 2.20Statistics ..................................... 45 3 Selected Physics Formulae 47 3.1 EquationsofElectromagnetism . ....... 48 3.2 Equations of Relativistic Kinematics and Mechanics . ............. 49 3.3 Thermodynamics and Statistical Physics . .......... 50 i Reference Data 1.1 PhysicalConstants................................. 2 1.2 AstrophysicalQuantities . 3 1.3 PeriodicTable ................................... 4 1.4 Electron Configurations of the Elements . 5 1.5 GreekAlphabetandSIPrefixes. 6 1 1.1 Physical Constants Symbol Quantity Value c Speed of light in free space 2.998 108 ms−1 h Planck constant 6.626 × 10−34 Js h¯ h/2π 1.055 × 10−34 Js × − − G Universal gravitation constant 6.674 10 11 Nm2 kg 2 e Electron charge 1.602 × 10−19 C × −31 me Electron rest mass 9.109 10 kg × −27 mp Proton rest mass 1.673 10 kg × −27 mn Neutron rest mass 1.675 10 kg 1 × 12 u Atomicmassunit ( 12 mass of C) = 1.661 10−27 kg × 23 −1 NA Avogadro constant 6.022 10 mol = 6.022× 1026 (kg-mole)−1 × −23 −1 k or kB Boltzmann constant 1.381 10 JK R Molar gas constant 8.314 × 103 J K−1 (kg-mole)−1 × − − 8.314 J K 1 mol 1 −24 −1 2 µB Bohr magneton 9.274 10 J T (or Am ) × −27 −1 µN Nuclear magneton 5.051 10 J T × −1 R∞ Rydberg constant 10973732 m Ry Rydberg energy 13.606 eV −11 a0 Bohr radius 5.292 10 m σ Stefan-Boltzmann constant 5.670 × 10−8 JK−4 m−2 s−1 b Wien displacement constant 2.898 × 10−3 mK α Fine-structure constant 1/137.04× −29 2 σe or σT Thomson cross section 6.652 10 m ×−7 −1 µ0 Permeability of free space 4π 10 Hm × − − = 1.257 10 6 Hm 1 2 × ǫ0 Permittivity of free space 1/(µ0c ) = 8.854 10−12 Fm−1 eV Electronvolt 1.602 10× −19 J g Standard acceleration of gravity 9.807× ms−2 atm Standard atmosphere 101325 Nm−2 = 101325 Pa 2 1.2 Astrophysical Quantities Symbol Quantity Value 30 M⊙ Mass of Sun 1.989 10 kg × 8 R⊙ Radius of Sun 6.957 10 m × 26 L⊙ Bolometric luminosity of Sun 3.828 10 W ⊙ × Mbol Absolute bolometric magnitude of Sun +4.74 ⊙ Mvis Absolute visual magnitude of Sun +4.83 ⊙ Teff Effective temperature of Sun 5770 K Spectral type of Sun G2 V M Mass of Jupiter 1.898 1027 kg J × RJ Equatorial radius of Jupiter 71492 km 24 M⊕ Mass of Earth 5.972 10 kg × R⊕ Equatorial radius of Earth 6378 km M Mass of Moon 7.348 1022 kg × R $ Equatorial radius of Moon 1738 km Sidereal year 3.156 107 s $ × au Astronomical Unit 1.496 1011 m ly Lightyear 9.461 × 1015 m pc Parsec 3.086 × 1016 m Jy Jansky 10−26 ×Wm−2 Hz−1 H Hubble constant 72 5 kms−1 Mpc−1 0 ± 3 1.3 Periodic Table 4 1.4 Electron Configurations of the Elements Z Element Electron configuration 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 1 H 1 2 He 2 3 Li 2 1 4 Be 2 2 5 B 2 2 1 6 C 2 2 2 7 N 2 2 3 8 O 2 2 4 9 F 2 2 5 10 Ne 2 2 6 11 Na 2 2 6 1 12 Mg 2 2 6 2 13 Al 2 2 6 2 1 14 Si 2 2 6 2 2 15 P 2 2 6 2 3 16 S 2 2 6 2 4 17 Cl 2 2 6 2 5 18 Ar 2 2 6 2 6 19 K 2 2 6 2 6 - 1 20 Ca 2 2 6 2 6 - 2 21 Sc 2 2 6 2 6 1 2 22 Ti 2 2 6 2 6 2 2 23 V 2 2 6 2 6 3 2 24 Cr 2 2 6 2 6 5 1 25 Mn 2 2 6 2 6 5 2 26 Fe 2 2 6 2 6 6 2 27 Co 2 2 6 2 6 7 2 28 Ni 2 2 6 2 6 8 2 29 Cu 2 2 6 2 6 10 1 30 Zn 2 2 6 2 6 10 2 31 Ga 2 2 6 2 6 10 2 1 32 Ge 2 2 6 2 6 10 2 2 33 As 2 2 6 2 6 10 2 3 34 Se 2 2 6 2 6 10 2 4 35 Br 2 2 6 2 6 10 2 5 36 Kr 2 2 6 2 6 10 2 6 37 Rb 2 2 6 2 6 10 2 6 - - 1 38 Sr 2 2 6 2 6 10 2 6 - - 2 39 Y 2 2 6 2 6 10 2 6 1 - 2 40 Zr 2 2 6 2 6 10 2 6 2 - 2 41 Nb 2 2 6 2 6 10 2 6 4 - 1 42 Mo 2 2 6 2 6 10 2 6 5 - 1 43 Tc 2 2 6 2 6 10 2 6 6 - 1 44 Ru 2 2 6 2 6 10 2 6 7 - 1 45 Rh 2 2 6 2 6 10 2 6 8 - 1 46 Pd 2 2 6 2 6 10 2 6 10 - - 47 Ag 2 2 6 2 6 10 2 6 10 - 1 48 Cd 2 2 6 2 6 10 2 6 10 - 2 49 In 2 2 6 2 6 10 2 6 10 - 2 1 50 Sn 2 2 6 2 6 10 2 6 10 - 2 2 51 Sb 2 2 6 2 6 10 2 6 10 - 2 3 52 Te 2 2 6 2 6 10 2 6 10 - 2 4 53 I 2 2 6 2 6 10 2 6 10 - 2 5 54 Xe 2 2 6 2 6 10 2 6 10 - 2 6 5 1.5 Greek Alphabet and SI Prefixes The Greek alphabet A α alpha N ν nu B β beta Ξ ξ xi Γ γ gamma O o omicron ∆ δ delta Π π pi E ǫ,ε epsilon P ρ,̺ rho Z ζ zeta Σ σ, ς sigma H η eta T τ tau Θ θ,ϑ theta Y υ upsilon I ι iota Φ φ,ϕ phi K κ kappa X χ chi Λ λ lambda Ψ ψ psi M µ mu Ω ω omega SI Prefixes Name Prefix Factor yotta Y 1024 zetta Z 1021 exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deca da 101 deci d 10−1 centi c 10−2 milli m 10−3 micro µ 10−6 nano n 10−9 pico p 10−12 femto f 10−15 atto a 10−18 zepto z 10−21 yocto y 10−24 6 Mathematics 2.1 MathematicalConstantsandNotation. 8 2.2 Algebra ....................................... 9 2.3 TrigonometricalIdentities . 10 2.4 HyperbolicFunctions ............................... 12 2.5 Differentiation ................................... 13 2.6 StandardDerivatives .............................. 14 2.7 Integration ..................................... 15 2.8 StandardIndefiniteIntegrals . 16 2.9 DefiniteIntegrals.................................. 18 2.10 CurvilinearCoordinateSystems. ... 19 2.11 VectorsandVectorAlgebra . 22 2.12 ComplexNumbers................................. 25 2.13Series......................................... 27 2.14 OrdinaryDifferentialEquations . ... 30 2.15 PartialDifferentiation. 33 2.16 PartialDifferentialEquations . ... 35 2.17 DeterminantsandMatrices . 36 2.18 VectorCalculus................................... 39 2.19 FourierSeries.................................... 42 2.20 Statistics....................................... 45 7 2.1 Mathematical Constants and Notation Constants π = 3.141592654 ... (N.B. π2 10) ≃ e = 2.718281828 ... ln10 = 2.302585093 ... log10 e = 0.434294481 ... ln x = 2.302585093 log10 x 1radian = 180/π 57.2958 degrees ≃ 1 degree = π/180 0.0174533 radians ≃ Notation Factorial n = n! = n (n 1) (n 2) ... 2 1 × − × − × × × (N.B. 0! = 1) n n Stirling’s approximation n! (2πn)1/2 (n 1) ≃ e ≫ ln n! n ln n n (Error < 4% for n 15) ≃ − ∼ ≥ n (n 2) 5 3 1 for n> 0 odd × − ×···× × × Double Factorial n!! = n (n 2) 6 4 2 for n> 0 even × − ×···× × × 1 for n = 1, 0 − exp(x) = ex ln x = loge x arcsin x = sin−1 x arccos x = cos−1 x arctan x = tan−1 x n Ai = A1 + A2 + A3 + + An = sum of n terms i=1 ··· Xn A = A A A A = product of n terms i 1 × 2 × 3 ×···× n iY=1 +1 if x> 0 Sign function: sgn x = 0 if x =0 1 if x< 0 − 8 2.2 Algebra Polynomial expansions (a + b)2 = a2 +2ab + b2 (ax + b)2 = a2x2 +2abx + b2 (a + b)3 = a3 +3a2b +3ab2 + b3 (ax + b)3 = a3x3 +3a2bx2 +3ab2x + b3 Quadratic equations ax2 + bx + c = 0 b √b2 4ac x = − ± − 2a Logarithms and Exponentials x x ln a If y = a then y = e and loga y = x a0 = 1 a−x = 1/ax ax ay = ax+y × ax/ay = ax−y (ax)y = (ay)x = axy ln1 = 0 ln(1/x) = ln x − ln(xy) = ln x + ln y ln(x/y) = ln x ln y − ln xy = y ln x logb y Change of base: loga y = logb a log10 y and in particular ln y = 2.303 log10 y log10 e ≃ 9 2.3 Trigonometrical Identities Trigonometric functions ✑ ✑ ✑ ✑ ✑ ✑ c✑ ✑ ✑ a ✑ ✑ ✑ ✑ ✑ ✑ θ b a b a sin θ = cos θ = tan θ = c c b 1 1 1 csc θ = sec θ = cot θ = sin θ cos θ tan θ Basic relations (sin θ)2 + (cos θ)2 sin2 θ + cos2 θ = 1 ≡ 1+tan2 θ = sec2 θ 1+cot2 θ = csc2 θ sin θ = tan θ cos θ Sine and Cosine Rules ✚✚❚ ✚ β ❚ ✚ ❚ ✚ a✚ ❚ c ✚ ❚ ✚ ✚ ❚ ✚ ❚ ✚ γ α ❚ b a b c Sine Rule = = sin α sin β sin γ Cosine Rule a2 = b2 + c2 2bc cos α − 10 Expansions for compound angles sin(A + B) = sin A cos B + cos A sin B sin(A B) = sin A cos B cos A sin B − − cos(A + B) = cos A cos B sin A sin B − cos(A B) = cos A cos B + sin A sin B − tan A + tan B tan(A + B) = 1 tan A tan B tan− A tan B tan(A B) = − − 1+tan A tan B π π sin θ + = +cos θ sin θ = +cos θ 2 2 − π π cos θ + = sin θ cos θ = +sin θ 2 − 2 − sin(π + θ) = sin θ sin(π θ) = +sin θ − − cos(π + θ) = cos θ cos(π θ) = cos θ − − − 1 cos A cos B = [cos(A + B) + cos(A B)] 2 − 1 sin A sin B = [cos(A B) cos(A + B)] 2 − − 1 sin A cos B = [sin(A + B) + sin(A B)] 2 − 1 cos A sin B = [sin(A + B) sin(A B)] 2 − − sin2A = 2sin A cos A cos2A = cos2 A sin2 A = 2cos2 A 1 − − = 1 2sin2 A −2tan A tan2A = 1 tan2 A − Factor formulae A + B A B sin A + sin B = +2sin cos − 2 2 A + B A B sin A sin B = +2cos sin − − 2 2 A + B A B cos A + cos B = +2cos cos − 2 2 A + B A B cos A cos B = 2sin sin − − − 2 2 11 2.4 Hyperbolic Functions Definitions and basic relations ex e−x sinh x = − 2 ex + e−x cosh x = 2 sinh x e2x 1 tanh x = = − cosh x e2x +1 sech x = 1/ cosh x cosh2 x sinh2 x = 1 − cosech x = 1/ sinh x 1 tanh2 x = sech2x − coth x = 1/ tanh x coth2 x 1 = cosech2x − −1 2 sinh x = loge[x + √x

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    54 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us