Curriculum Vitae – Wouter Duivesteijn

Curriculum Vitae – Wouter Duivesteijn

Curriculum Vitae – Wouter Duivesteijn Date of birth December 09, 1984 Place of birth Rotterdam, the Netherlands Nationality Dutch Email address [email protected] Website http://wwwis.win.tue.nl/~wouter/ Academic career September 2016 Assistant Professor Data Mining at Technische Universiteit Eindhoven (the Nether- - now lands). October 2015 Postdoctoraal Bursaal at Universiteit Gent (Belgium), working on the FORSIED project: - August 2016 FORmalising Subjective Interestingness in Exploratory Data mining. August 2015 Honorary Research Associate at University of Bristol (UK), working on the FORSIED - September 2015 project: FORmalising Subjective Interestingness in Exploratory Data mining. August 2013 Wissenschaftlicher Mitarbeiter at Technische Universität Dortmund (Germany), in - July 2015 Sonderforschungsbereich 876: Verfügbarkeit von Information durch Analyse unter Ressourcenbeschränkung (Collaborative Research Center SFB 876: Providing Informa- tion by Resource-Constrained Data Analysis). July 2009 PhD candidate in the Algorithms group at Leiden Institute of Advanced Computer - July 2013 Science, Universiteit Leiden (the Netherlands), under the supervision of Joost N. Kok and Arno Knobbe (graduation date: September 17, 2013). Education 2019 University Teaching Qualification (UTQ), Technische Universiteit Eindhoven. 2009-2013 PhD in Computer Science, Universiteit Leiden (graduated on September 17, 2013). 2008-2009 MSc in History and Philosophy of Science, Universiteit Utrecht (aborted for PhD position). 2005-2008 MSc in Applied Computing Science, Universiteit Utrecht (graduated on October 15, 2008). 2005-2007 MSc in Mathematical Sciences, Universiteit Utrecht (graduated on October 30, 2007). 2002-2005 BSc in Mathematics, Universiteit Utrecht (graduated on July 7, 2005). 2002-2005 BSc in Computer Science, Universiteit Utrecht (graduated on July 7, 2005). 1996-2002 Gymnasium, C.S.G. Blaise Pascal, Spijkenisse. Awards and funding C.J. Kokprijs 2013: the award for the best dissertation of the year in Leiden University’s Faculty of Science. The award has been bestowed annually since 1971; I am the only computer scientist to ever win it. Co-applicant in EDIC: Exceptional and Deep Intelligent Coach, a project funded in the NWO COMMIT2DATA - DATA2PERSON scheme, for a total amount of EUR 1 253 500. KDD 2012 student travel award: USD 1 000 plus free registration (worth USD 380). ICDM 2011 student travel award: CAD 500.ICDM 2010 student travel award: USD 500. 1 Research 1.1 Publications See also Google Scholar Citations: https://scholar.google.nl/citations?user=LmsQAtAAAAAJ. 1.1.1 Journal publications 11. W. Duivesteijn, S. Hess, X. Du: How to Cheat the Page Limit. In WIREs Data Mining and Knowledge Discovery, available online. Impact factor: 2:541 (2018). 10. X. Du, Y. Pei, W. Duivesteijn, M. Pechenizkiy: Exceptional Spatio-Temporal Behavior Mining through Bayesian Non-Parametric Modeling. In Data Mining and Knowledge Discovery, avail- able online. Impact factor: 2:879 (2018). 9. C. Rebelo de Sá, W. Duivesteijn, P. Azevedo, A.M. Jorge, C. Soares, A. Knobbe: Discovering a Taste for the Unusual — Exceptional Models for Preference Mining. In Machine Learning 107 (11), pp. 1775–1807, 2018. Impact factor: 2:809. 8. L. Downar, W. Duivesteijn: Exceptionally Monotone Models — the Rank Correlation Model Class for Exceptional Model Mining. In: Knowledge and Information Systems 51 (2), pp. 369–394, 2017. Impact factor: 2:247. 7. C. Pölitz, W. Duivesteijn, K. Morik: Interpretable Domain Adaptation via Optimization over the Stiefel Manifold. In: Machine Learning 104 (2–3), pp. 315–336, 2016. Impact factor: 1:848. 6. W. Duivesteijn: Correction to Jin-Ting Zhang’s “Approximate and Asymptotic Distributions of Chi-Squared-Type Mixtures with Applications”. In: Journal of the American Statistical Asso- ciation 111 (515), pp. 1370–1371, 2016. Impact factor: 2:016. 5. W. Duivesteijn, A.J. Feelders, A. Knobbe: Exceptional Model Mining — Supervised Descriptive Local Pattern Mining with Complex Target Concepts. In: Data Mining and Knowledge Discov- ery 30 (1), pp. 47–98, 2016. Impact factor: 3:160. 4. R.M. Konijn, W. Duivesteijn, M. Meeng, A. Knobbe: Cost-based Quality Measures in Subgroup Discovery. In: Journal of Intelligent Information Systems 45 (3), pp. 337–355, 2015. Impact factor: 1:000. 3. P. Lohuis, S. Faraj-Hakim, W. Duivesteijn, A. Knobbe, A.-J. Tasman: Benefits of a Short, Practical Questionnaire to Measure Subjective Perception of Nasal Appearance after Aesthetic Rhinoplasty. In: Plastic and Reconstructive Surgery 132 (6), pp. 913e–923e, 2013. Impact factor: 3:328. 2. P.J.F.M. Lohuis, S. Hakim, A. Knobbe, W. Duivesteijn, G.M. Bran: Split hump technique for reduction of the overprojected nasal dorsum – a statistical analysis on subjective body image in relation to nasal appearance and nasal patency in 97 aesthetic rhinoplasty patients. In: Archives of Facial Plastic Surgery, 2012, 14 (5), pp. 346–353. Impact factor: 1:463. 1. S. Hakim, A. Knobbe, W. Duivesteijn, P.J.F.M. Lohuis: Results of a screening questionnaire measuring physical perception of patients undergoing esthetic rhinoplasty: a statistical analysis. In: Nederlands Tijdschrift voor Keel-Neus-Oorheelkunde (Dutch Journal for Otorhinolaryngology), 2010 (2), p. 100. Impact factor: 0. 1.1.2 Conference publications 22. Y. Soons, R. Dijkman, M. Jilderda, W. Duivesteijn: Predicting Remaining Useful Life with Similarity-based Priors. In: Proceedings of the 18th International Symposium on Intelligent Data Analysis (IDA 2020), pp. 483–495. Acceptance rate: 0:3947 (45 out of 114). 21. X. Du, Y. Pei, W. Duivesteijn, M. Pechenizkiy: Fairness in Network Representation by Latent Structural Heterogeneity in Observational Data. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI 2020), to appear. Acceptance rate: 0:2056 (1591 out of 7737). 20. A. Belfodil, W. Duivesteijn, M. Plantevit, S. Cazalens, P. Lamarre: DEvIANT: Discovering signif- icant exceptional (dis-)agreement within groups. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2019), to appear. Acceptance rate: 0:1771 (130 out of 734). 19. S. Hess, W. Duivesteijn: k is the Magic Number — Inferring the Number of Clusters Through Nonparametric Concentration Inequalities. In: Proceedings of the European Conference on Ma- chine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2019), to appear. Acceptance rate: 0:1771 (130 out of 734). 18. S. Hess, W. Duivesteijn, P. Honysz, K. Morik: The SpectACl of Nonconvex Clustering: A Spec- tral Approach to Density-Based Clustering. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI 2019), pp. 3788–3795. Acceptance rate: 0:1621 (1150 out of 7095). 17. X. Du, W. Duivesteijn, M. Klabbers, M. Pechenizkiy: ELBA: Exceptional Learning Behavior Analysis. In: Proceedings of the 11th International Conference on Educational Data Mining (EDM 2018), pp. 312–318. Acceptance rate: 0:4207 (61 out of 145). 16. J. Lijffijt, B. Kang, W. Duivesteijn, K. Puolamäki, E. Oikarinen, T. De Bie: Subjectively Interesting Subgroup Discovery on Real-valued Targets. In: Proceedings of the 34th IEEE International Conference on Data Engineering (ICDE 2018), pp. 1352-1355. Acceptance rate: 0:2311 (98 out of 424). A substantially longer version appeared on arXiv: https://arxiv.org/abs/1710.04521 15. W. Duivesteijn, T. Farzami, T. Putman, E. Peer, H.J.P. Weerts, J.N. Adegeest, G. Foks, M. Pech- enizkiy: Have It Both Ways — from A/B Testing to A&B Testing with Exceptional Model Mining. In: Proceedings of the European Conference on Machine Learning and Principles and Prac- tice of Knowledge Discovery in Databases (ECML PKDD 2017), part III, pp. 114–126. Acceptance rate: 0:2903 (27 out of 93). 14. C. Rebelo de Sá, W. Duivesteijn, C. Soares, A. Knobbe: Exceptional Preferences Mining. In: Proceedings of the 19th International Conference on Discovery Science (DS 2016), pp. 3–18. Acceptance rate: 0:5000 (30 out of 60). 13. L. Downar, W. Duivesteijn: Exceptionally Monotone Models — the Rank Correlation Model Class for Exceptional Model Mining. In: Proceedings of the 15th IEEE International Conference on Data Mining (ICDM 2015), pp. 111–120, 2015. Acceptance rate: 0:0843 (68 out of 807). Including short papers: 0:1821 (147 out of 807). Distilled from Lennart’s Bachelor thesis, available at: http://sfb876.tu-dortmund.de/PublicPublicationFiles/downar_2014a.pdf 12. W. Duivesteijn, J. Thaele: Understanding Where Your Classifier Does (Not) Work. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2015) (III), pp. 250–253, 2015. Acceptance rate: 0:4828 (14 out of 29). 11. W. Duivesteijn, J. Thaele: Understanding Where Your Classifier Does (Not) Work — the SCaPE Model Class for EMM. In: Proceedings of the 14th IEEE International Conference on Data Mining (ICDM 2014), pp. 809–814, 2014. Acceptance rate: 0:1953 (142 out of 727). A substantially longer version appeared as Technical Report of the SFB 876 at the TU Dortmund: http://sfb876.tu-dortmund.de/PublicPublicationFiles/duivesteijn_thaele_2014a.pdf 10. J. Witteveen, W. Duivesteijn, A. Knobbe, P. Grünwald: RealKRIMP – Finding Hyperintervals that Compress with MDL for Real-Valued Data. In: Proceedings of the 13th International Symposium on Intelligent Data Analysis (IDA 2014), pp. 368–379, 2014. Acceptance rate: 0:4800 (36 out of 75). Distilled from Jouke’s

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us