
The Cormor´an project: a new concept in commercial aircraft design G´omezGonz´alez,V´ıctor Izquierdo Collado, Emilio Jos´e Stockholm - 30th of January 2013 Abstract This paper presents a new revolutionary design in commercial aircraft: the conven- tional vertical and horizontal tails are not present as generally known, and their contri- bution to the manoeuvering of the aircraft, namely the presence of the rudder and the elevators, is achieved by locating them at the wingtips and in the canard, respectively. Substituting the horizontal tail with the canard, the possibility of dividing the fuel be- tween the wing (where it is located conventionally) and the canard allows the pilot to change the center of gravity during the flight with more freedom, while the effect of the elevators continues present. Locating the vertical stabilizers at the wingtips combines the effect of the vertical stabilizer and the winglet all in one, with the corresponding lost of weight. In this sense, the aerodynamic, stability and aeroelastic characteristics of an aircraft such as the one described have been analyzed using different modules belonging to CEASIOM program, and the results are very encouraging, showing that it is really feasible to change the current concept of the commercial aircraft without penalizing the performance. 2 Acknowledgments We would like to address special thanks to Professor Arthur Rizzi for giving us the great opportunity to carry out our master's thesis project in his department and also for give us the chance to participate in the AIAA-Pegasus students conference representing the Royal Institute of Technology (KTH). Moreover we would like to thank Professor Sergio Ricci from Politecnico di Milano his help to carry out this project as well as Jos´e Pedro Magraner Rull´anfrom Universitat Polit`ecnicade Val`enciafor the useful information provided. 3 Contents 1 Introduction 10 2 What is CEASIOM? 14 2.1 AcBuilder.................................... 15 2.2 Weights and Balance.............................. 15 2.3 Aerodynamic module builder (AMB)..................... 15 2.4 Simulation and Dynamic Stability Analyzer (SDSA)............. 16 2.5 Next generation Conceptual Aero-Structural Sizing Suite (NeoCASS)... 17 3 Geometry. 18 4 Implementation in AcBuilder. 23 4.1 Weights & balance................................ 28 5 Aerodynamic Model Builder (AMB). 29 5.1 Code modifications................................ 29 5.2 Results...................................... 33 6 Analysis of stability and control. 37 6.1 Previous procedure. Propulsion module.................... 37 6.2 Stability and control.............................. 38 6.3 Phugoid mode.................................. 39 6.4 Short Period mode................................ 40 6.5 Dutch Roll mode................................. 41 6.6 Roll mode..................................... 42 6.7 Spiral mode.................................... 43 6.8 Conclusion of the stability analysis....................... 44 6.9 Manoeuver test.................................. 44 6.10 Performances................................... 46 6.10.1 Drag polar................................ 46 6.10.2 Flight envelope.............................. 50 7 Structural and aeroelastic analysis. 51 7.1 Code modifications............................... 52 7.2 Results...................................... 56 8 Payload-Range diagram 61 9 Cost estimation 63 10 Conclusion 67 4 A Aerodynamic derivatives 70 5 List of Figures 1 Beechcraft Starship............................... 10 2 Beechcraft Starship 3 views.......................... 10 3 Curtiss-Wright XP-55 Ascender........................ 11 4 Curtiss-Wright XP-55 Ascender 3 views.................... 11 5 Miles M39B Libellula.............................. 11 6 Miles M39B Libellula 3 views......................... 11 7 Rutan Long-EZ................................. 11 8 Rutan Long-EZ 3 views............................ 11 9 Kyushu J7W1.................................. 11 10 Kyushu J7W1 3 views............................. 11 11 Conceptual design process........................... 12 12 3D model of Cormor´an............................. 13 13 CEASIOM package............................... 14 14 Cormor´an'splanform view. Configuration 1.................. 18 15 Cormor´an'sfront view. Configuration 1.................... 19 16 Cormor´an'sside view. Configuration 1..................... 19 17 Cormor´an'splanform view. Configuration 2.................. 19 18 Cormor´an'sfront view. Configuration 2.................... 20 19 Cormor´an'sside view. Configuration 2..................... 20 20 Cormor´an'sAcBuilder model. Configuration 1................. 24 21 Cormor´an'sAcBuilder model. Configuration 2................. 24 22 New options needed and implemented in AcBuilder.............. 25 23 Fuel tanks in both wings............................. 26 24 New options needed and implemented in AcBuilder.............. 26 25 Centers of gravity................................ 27 26 `tornado geo.m'code............................... 30 27 3D panels, collocation points and normals for the first configuration..... 30 28 3D panels, collocation points and normals for the second configuration... 31 29 `run tornado'code................................ 31 30 Three views for both configurations....................... 32 31 Showtable.m code................................ 32 32 Cl- α....................................... 33 33 Cd - α....................................... 34 34 Typical Cl - α plot................................ 34 35 Parameters of Propulsion module....................... 37 36 Results of Propulsion module......................... 37 37 Static margin................................... 38 38 Recommended Phugoid Characteristics. Configuration 1........... 39 39 Recommended Phugoid Characteristics. Configuration 2........... 40 40 Recommended Short Period Characteristics. Configuration 1......... 40 6 41 Recommended Short Period Characteristics. Configuration 2......... 41 42 Recommended Dutch Roll Characteristics. Configuration 1......... 41 43 Recommended Dutch Roll Characteristics. Configuration 2......... 42 44 Recommended Roll Characteristics. Configuration 1............. 42 45 Recommended Roll Characteristics. Configuration 2............. 43 46 Recommended Spiral Characteristics. Configuration 1............ 43 47 Recommended Spiral Characteristics. Configuration 2............ 44 48 Control deflections due to the manoeuver................... 46 49 Polar with SDSA................................. 46 50 Polar with flat-plate theory........................... 50 51 Flight envelope.................................. 50 52 Aerodynamic model............................... 51 53 Structural model................................ 51 54 Aeroelastic model................................ 52 55 `SymmXZ.m'code................................ 54 56 `link structs.m'code............................... 55 57 `plot beam defo.m'code............................. 56 58 Deformed shape for mode 3.......................... 58 59 Deformed shape for mode 4.......................... 58 60 V-g at h = 0................................... 59 61 Deformed shape for mode 10.......................... 59 62 Deformed shape for mode 12.......................... 59 63 Payload-range diagram.............................. 61 64 Range with maximum payload......................... 62 65 Range with maximum fuel weight........................ 62 66 Example of the .txt that the showtable.m function gives........... 70 7 List of Tables 1 Geometry data for the fuselage......................... 20 2 Geometry data for the wing........................... 21 3 Geometry data for the canard.......................... 21 4 Aerodynamic derivatives............................. 22 5 Geometry data for vertical stabilizers...................... 23 6 Centers of gravity location............................ 28 7 Inertia matrix................................... 28 8 Contribution to the CD0 of each component.................. 49 9 Cormor´anweights................................ 57 10 Vibration modes................................. 58 11 Development and procurement costs...................... 66 8 Nomenclature c1 Inboard chord β Sideslip angle c2 Outboard chord CYδR Derivative for lateral force due to rudder deflection croot Vertical Stabilizer root chord CYδA Derivative for lateral force due to aileron deflection ctip Vertical Stabilizer tip chord CYβ Derivative for lateral force due to sideslip angle b Span ClδR Derivative for rolling moment due to rudder deflection l Total fuselage length ClδA Derivative for rolling moment due to aileron deflection α Angle of attack Clβ Derivative for rolling moment due to sideslip angle λLE Leading edge sweep angle CNδR Derivative for yawing moment due to rudder deflection Λ Dihedral angle CNδA Derivative for yawing moment due to aileron deflection Y Lateral force CNβ Derivative for yawing moment due to sideslip angle L Rolling moment CNEO Derivative for yawing moment due to engine failure N Yaw moment dvert:Aft Vertical diameter aft fuselage ρ Density dhoriz:Aft Horizontal diameter aft fuselage S Wing area dvert:F ore Vertical diameter fore fuselage V0 Aircraft velocity dhoriz:F ore Horizontal diameter fore fuselage φ Roll angle u x-axis velocity δR Rudder deflection v y-axis velocity δA Aileron deflection w z-axis velocity δE Elevator deflection p x-axis angular velocity T Thrust q y-axis angular velocity aEO Arm of the dead engine r z-axis angular velocity 9 1 Introduction The aim of the work is to explain the development of a new
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages70 Page
-
File Size-