
Ubiquitous Computing Ubiquitous Computing Friedemann Mattern ETH Zurich Institute for Pervasive Computing Eidgenössische Technische Hochschule Porquerolles May 2003 EETTH Zürich Friedemann Mattern This lecture is not about algorithms or theoretical CS Classical distributed algorithms (consistent state, termination detection, garbage collection,...) from a higher point of view Ubiquitous Computing (pervasive computing, ambient intelligence,...): Almost unnoticed revolution that transforms the whole world into a large distributed system with important consequences to computer science... ...and to almost everyone living on earth F. Ma. 2 © F. Mattern, Porquerolles, May 2003 1 Ubiquitous Computing Friedemann Mattern image source: “Die Zeit” Friedemann Mattern Size Number Computing: A Clear Trend One computer (mainframe) for many people One computer (PC) for everyone Many computers for everyone F. Ma. 4 © F. Mattern, Porquerolles, May 2003 2 Ubiquitous Computing Friedemann Mattern The Trend… What‘s Next? Number smart dust? Many computers for everyone Size F. Ma. 5 Friedemann Mattern The Qualitative Growth of the Internet 2003 Mobile Internet WWW Research Email network people to people to people machines Internet time line F. Ma. 6 © F. Mattern, Porquerolles, May 2003 3 Ubiquitous Computing Friedemann Mattern The Qualitative Growth of the Internet Networked embedded systems machines talking 2003 to machines Ubiquitous Computing Mobile Internet WWW Research Email network people to people to machines to people machines machines Internet time line F. Ma. 7 Friedemann Mattern The Qualitative Growth of the Internet Networked embedded systems machines talking 2003 to machines everyday objects Ubiquitous Computing Mobile Internet WWW Research Email network people to people to machines to people machines machines Internet time line F. Ma. 8 © F. Mattern, Porquerolles, May 2003 4 Ubiquitous Computing Friedemann Mattern Ubiquitous Computing Information technology will be everywhere Everyday objects will become smart embedded processors ...and they will all be interconnected wireless communication F. Ma. 9 image source: “Die Zeit” Friedemann Mattern Outline 4 Technology Trends The Vision Making Things Smart Consequences Friedemann Mattern, ETH Zurich F. Ma. 10 © F. Mattern, Porquerolles, May 2003 5 Ubiquitous Computing Friedemann Mattern Outline 4 Technology Trends The Vision Making Things Smart Consequences Friedemann Mattern, ETH Zurich F. Ma. 11 Friedemann Mattern 1. Moore‘s Law (1965) F. Ma. 12 © F. Mattern, Porquerolles, May 2003 6 Ubiquitous Computing Friedemann Mattern Moore‘s Law Electronics, April 19, 1965 F. Ma. 13 Friedemann Mattern Cramming more... F. Ma. 14 © F. Mattern, Porquerolles, May 2003 7 Ubiquitous Computing Friedemann Mattern Cramming more... F. Ma. 15 Friedemann Mattern Cramming more... 16 „...factor of two 15 14 per year…“ 13 12 11 10 „...by 1975, the 9 OF THE 8 number of components 2 7 6 per integrated circuit ... LOG 5 4 will be 65,000“ 3 NUMBER OF COMPONENTS 2 PER INTEGRATED FUNCTION INTEGRATED PER 1 0 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 YEAR F. Ma. 16 © F. Mattern, Porquerolles, May 2003 8 Ubiquitous Computing Friedemann Mattern Storage Density Trend F. Ma. 18 Friedemann Mattern Generalized Moore‘s Law Most important technology parameters double every 1 – 3 years: Problems: computation cycles -increasingcost memory, magnetic disks -energy bandwidth Consequence: scaling down F. Ma. 19 © F. Mattern, Porquerolles, May 2003 9 Ubiquitous Computing Friedemann Mattern 2. Progress in Communication Technologies Fiber optics: from Gbit/s to Tbit/s Wireless mobile phone: GSM, UMTS wireless LAN (> 10 Mbit/s) Bluetooth Body area networks Nostalgia F. Ma. 20 Friedemann Mattern Telecommunication and Information Everywhere – an Old Vision (1882) Carl Stauber (1882): „Die Zukunft des Telefons“ F. Ma. 21 © F. Mattern, Porquerolles, May 2003 10 Ubiquitous Computing Friedemann Mattern 3. Better Sensors Miniaturized cameras, microphones,... Fingerprint sensor Radio sensors without power supply Location sensors e.g., GPS ... POSITION N 047° 23’17’’ E008° 34’26’’ F. Ma. 22 Friedemann Mattern Example: Standalone Radio Sensors No external power supply image source: Siemens energy from the actuation process piezoelectric and pyroelectric materials transform changes in pressure or temperature into energy RF signal is transmitted by an antenna (up to 20 m) F. Ma. 23 © F. Mattern, Porquerolles, May 2003 11 Ubiquitous Computing Friedemann Mattern Piezoelectric Transponders Transformer: electrical signal ↔ dipole antenna acoustic surface wave reflectors in both directions Surface wave: piezo- propagates on the crystal surface of a body electro acoustic on piezo crystals: transformer ~ 3500 m/s Reflectors consist of 0.1 µm thinn aluminium stripes F. Ma. 24 Friedemann Mattern Piezoelectric Transponders External energy pulse Transformed into a surface wave Each reflector sends parts of the wave back to the transformer Transformed into RF pulses and sent out surface wave reflections after a few µs F. Ma. 25 © F. Mattern, Porquerolles, May 2003 12 Ubiquitous Computing Friedemann Mattern Piezoelectric Transponders Surface wave is much slower than RF wave RF noise (e.g., reflections by the environment) vanishes after 1 µs RF response takes more than 2 µs F. Ma. 26 Friedemann Mattern Remote Identifications Characteristic pulse sequence by specific alignment of the reflectors e.g., binary digits Æ up to 32 bits Æ identification of remote objects F. Ma. 27 © F. Mattern, Porquerolles, May 2003 13 Ubiquitous Computing Friedemann Mattern Remote Sensors RF pulse RF response Second transformer at the end changes the impedance Can be controlled by a resistor that depends on some sensor value e.g., photo resistor, NTC/PTC resistor, hall sensor F. Ma. 28 Friedemann Mattern 4. New Materials Whole eras named after materials e.g., „Stone Age“ More recently: semiconductors, fibers information and communication technology first transistor, 1947 F. Ma. 30 © F. Mattern, Porquerolles, May 2003 14 Ubiquitous Computing Friedemann Mattern 4. New Materials Whole eras named after materials e.g., „Stone Age“ More recently: semiconductors, fibers information and communication technology first transistor, 1947 Organic semiconductors Æ change the external appearance of computers „Plastic“ laser Æ opto electronics, flexible displays,… ... F. Ma. 31 Friedemann Mattern Example: Flexible Substrates F. Ma. 32 © F. Mattern, Porquerolles, May 2003 15 Ubiquitous Computing Friedemann Mattern Smart Paper, Electronic Ink Micro capsules Light state Dark state Top transparent electrode - + Negatively charged Positively charged black pigment chips white pigment chips Clear fluid Bottom electrode + - F. Ma. 33 Friedemann Mattern Smart Paper, Electronic Ink Micro capsules Top transparent electrode Negatively charged Positively charged black pigment chips white pigment chips Clear fluid Bottom electrode + - 0.2 mm F. Ma. 34 © F. Mattern, Porquerolles, May 2003 16 Ubiquitous Computing Friedemann Mattern Smart Paper, Electronic Ink An electronically charged pencil rotates the “pixels” F. Ma. 35 Friedemann Mattern All Trends Together Lead to a New Era Progress in computing speed communication bandwidth material sciences Æ Pervasive Computing sensor techniques Æ Ubiquitous Computing computer science concepts Æ Ambient Intelligence miniaturization Æ Disappearing Computer energy usage battery technique Æ Invisible Computing display technologies price ... F. Ma. 36 © F. Mattern, Porquerolles, May 2003 17 Ubiquitous Computing Friedemann Mattern Outline 4 Technology Trends The Vision Making Things Smart Consequences Friedemann Mattern, ETH Zurich F. Ma. 37 Friedemann Mattern The Vision „In the 21st century the technology revolution will move into the everyday, the small and the invisible…“ Mark Weiser (1952 – 1999), XEROX PARC F. Ma. 39 © F. Mattern, Porquerolles, May 2003 18 Ubiquitous Computing Friedemann Mattern The Vision „In the 21st century the technology revolution will move into the everyday, the small and the invisible…“ Mark Weiser (1952 – 1999), XEROX PARC Small, lightweight, cheap, mobile processors and sensors in almost all everyday objects („embedded computing“) on your body („wearable computing“) embedded in the environment („sensor networks“) F. Ma. 40 Friedemann Mattern The Vision in almost all everyday objects („embedded computing“) F. Ma. 41 © F. Mattern, Porquerolles, May 2003 19 Ubiquitous Computing Friedemann Mattern Embedded Computing Enables „Cooperating Smart Things“ Real world objects are enriched with information processing capabilities Embedded processors in everyday objects small cheap lightweight Wireless communication spontaneous networks Sensors F. Ma. 42 Friedemann Mattern Embedded Computing Enables „Cooperating Smart Things“ Real world objects are enriched with information processing capabilities Embedded processors in everyday objects small cheap lightweight Wireless communication spontaneous networks Sensors F. Ma. 43 © F. Mattern, Porquerolles, May 2003 20 Ubiquitous Computing Friedemann Mattern Smart Objects I‘m Can remember pertinent events smart! they have a memory Show context-sensitive behavior they may have sensors Æ location / situation awareness hello! Are responsive communicate with their environment networked with other smart objects F. Ma. 44 Friedemann Mattern The Vision „In the 21st
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages50 Page
-
File Size-