Math 651 Homework 1 - Algebras and Groups Due 2/22/2013

Math 651 Homework 1 - Algebras and Groups Due 2/22/2013

<p>Math 651 <br>Groups <br>Homework 1 - Algebras and <br>Due 2/22/2013 </p><p>1) Consider the Lie Group SU(2), the group of 2 × 2 complex matrices A with A<sup style="top: -0.6172em;">T </sup>A = I and det(A) = 1.&nbsp;The underlying set is </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ ꢁ </li><li style="flex:1">ꢂ</li><li style="flex:1">ꢄ</li></ul><p>ꢃ</p><p>ꢃꢃ</p><p>z −w </p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>|z| + |w| = 1 </p><p>(1) (2) </p><p></p><ul style="display: flex;"><li style="flex:1">w</li><li style="flex:1">z</li></ul><p></p><p>3</p><p>with the standard S topology. The usual basis for su(2) is </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>0 i </p><p>i 0 </p><p>0 −1 </p><p>i</p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">X = </li><li style="flex:1">Y = </li><li style="flex:1">Z = </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">0</li><li style="flex:1">0 −i </li></ul><p>(which are each i times the Pauli matrices: X = iσ<sub style="top: 0.1494em;">x</sub>, etc.). a) Show this is the algebra of purely imaginary quaternions, under the commutator bracket. </p><p>b) Extend X to a left-invariant field and Y to a right-invariant field, and show by computation that the Lie bracket between them is zero. </p><p>c) Extending X, Y , Z to global left-invariant vector fields, give SU(2) the metric g(X, X) = g(Y, Y ) = g(Z, Z) = 1 and all other inner products zero. Show this is a bi-invariant metric. </p><p>d) Pick ꢀ &gt; 0 and set g(X, X) = ꢀ<sup style="top: -0.3615em;">2</sup>, leaving g(Y, Y ) = g(Z, Z) = 1. <br>Show this is left-invariant but not bi-invariant. </p><p>√</p><p>2) The realification of an n×n complex matrix A+ −1B is its assignment it to the 2n × 2n matrix </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>A −B </p><p>(3) </p><p></p><ul style="display: flex;"><li style="flex:1">B</li><li style="flex:1">A</li></ul><p></p><p>Any n × n quaternionic matrix can be written A + Bk where A and B are complex matrices. Its complexification is the 2n × 2n complex matrix </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>A −B </p><p>(4) </p><p></p><ul style="display: flex;"><li style="flex:1">B</li><li style="flex:1">A</li></ul><p></p><p>a) Show that the realification of complex matrices and complexification of quaternionic matrices are algebra homomorphisms.&nbsp;In the </p><p>1</p><p>quaternionic case, show that quaternionic conjugation corresponds to complex conjugation and the transposition of the off-diagonal blocks (but not the transpositions of the blocks themselves), and that quaternionic transposition corresponds to transposition of the blocks themselves (so that quaternionic conjugate-transpose is the same as complex conjugate-transpose of the complexified matrix). b) The matrix groups Sp(n) are the n × n quaternion-valued matrices <br>Q that satisfy Q<sup style="top: -0.6172em;">T </sup>Q = I. Show that Sp(1) ≈ SU(2). c) We defined the the algebras sp(2n, R) and sp(2n, C) to be the 2 × 2 real (resp. complex) matrices X that satisfy </p><p>X<sup style="top: -0.4114em;">T </sup>J + JX = 0 </p><p>(5) where </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>0</p><p>I</p><ul style="display: flex;"><li style="flex:1">J = </li><li style="flex:1">.</li></ul><p></p><p>(6) </p><p>−I 0 </p><p>The Lie algebra sp(n) of the group Sp(n) defined above is necessarily a real Lie algebra.&nbsp;Via the complexification process, show that sp(n)⊗C ≈ sp(2n, C) (the real algebras sp(2n, R) and sp(n) are real forms of the complex algebra sp(2n, C)). </p><p>3) Let&nbsp;g be a finite-dimensional Lie algebra over C with radical r, and assume r is abelian.&nbsp;In this problem we will use the vanishing of H<sup style="top: -0.3616em;">2 </sup>for semisimple algebras to prove that g = h⊕r. As&nbsp;a side note, this is the essential step in Levi’s theorem (that g = h n r whether or not r is abelian). </p><p>a) Let g = g/r and show that r is a g-module. In the future, denote the canonical projection g → g simply with a bar: x → x¯ ∈ g. </p><p>b) Let σ : g → g be any vector-space splitting.&nbsp;This means that when x ∈ g we have σ(x¯) = x¯. Show that </p><p>g(x, y) , σ([x, y]) − [σ(x), σ(y)] </p><p>(7) </p><p>V</p><p>is an element of&nbsp;<sup style="top: -0.4843em;">2 </sup>g<sup style="top: -0.3653em;">∗</sup>⊗g, which can actually be considered an element </p><p>V</p><p>of <sup style="top: -0.4842em;">2 </sup>g<sup style="top: -0.3652em;">∗ </sup>⊗ r. c) Show that the map g is closed, so g represents a class in H<sup style="top: -0.3615em;">2</sup>(g, r). d) By the vanishing of H<sup style="top: -0.3615em;">2</sup>(g, r), we know g is exact.&nbsp;Show that this results in a map η : g → η so that g(x, y) = η([x, y]), and that σ −η : g → g is a Lie algebra monomorphism, so provides the desired Lie algebra compliment to r. </p><p>2</p><p>4) In&nbsp;class we stated that H<sup style="top: -0.3616em;">2</sup>(g, M) could be identified with the isomorphism classes of abelien extensions of g by M. We proved half of this assertion: that given a representative of a class in H<sup style="top: -0.3615em;">2</sup>, we could construct such a Lie algebra extension, and if a different representative in the same class were chosen, the two extensions, though not the same, were isomorphic. Now assume M is a g-module and </p><p></p><ul style="display: flex;"><li style="flex:1">i</li><li style="flex:1">π</li></ul><p></p><p>(8) <br>0</p><p>M</p><p></p><ul style="display: flex;"><li style="flex:1">h</li><li style="flex:1">g</li></ul><p></p><p>0is an exact sequence of Lie algebras and so that the bracket in h is given by </p><p></p><ul style="display: flex;"><li style="flex:1">[x, i(m)] = i (π(x).m) </li><li style="flex:1">(9) </li></ul><p>for m ∈ M, and that [i(m), i(n)] = 0.&nbsp;Prove there is class in H<sup style="top: -0.3615em;">2</sup>(g, M) that provides this extension. </p><p>5) Let G be a connected Lie algebra, meaning a manifold with a given differentiable structure, along with a group structure.&nbsp;Prove that G has a canonical analytic structure.&nbsp;You may proceed as you wish, but here is one practicable approach: Let Ω ⊂ g be a connected domain containing 0 which is small enough that exp : Ω → U is a diffeomorphism, and let {p<sub style="top: 0.1494em;">i</sub>}<sub style="top: 0.1494em;">i∈Λ </sub>(where Λ ⊆ Z) be a set of points in G. Let&nbsp;U<sub style="top: 0.1494em;">i </sub>= L<sub style="top: 0.1494em;">p </sub>U, and let </p><p>i</p><p>π<sub style="top: 0.1494em;">i </sub>: U<sub style="top: 0.1494em;">i </sub>→ Ω, given by </p><p>π<sub style="top: 0.1494em;">i </sub>, exp<sup style="top: -0.4113em;">−1 </sup>◦ L<sub style="top: 0.2758em;">p </sub></p><p>(10) </p><p>−1 </p><p>i</p><p>be the charts. Then show the following: a) The p<sub style="top: 0.1495em;">i </sub>can be chosen so that {Ω<sub style="top: 0.1495em;">i</sub>}<sub style="top: 0.1495em;">i∈Λ </sub>is a locally finite covering of G b) Set U<sub style="top: 0.1494em;">ij </sub>= U<sub style="top: 0.1494em;">i </sub>∩ U<sub style="top: 0.1494em;">j </sub>whenever i = j and the intersection is non-empty. <br>Then both π<sub style="top: 0.1494em;">i</sub>, π<sub style="top: 0.1494em;">j </sub>: U<sub style="top: 0.1494em;">ij </sub>→ Ω. Using&nbsp;the Cambpell-Baker-Hausdorff formula, show that the transition maps π<sub style="top: 0.1494em;">i </sub>◦ π<sub style="top: 0.2552em;">j</sub><sup style="top: -0.4124em;">−1 </sup>are analytic. </p><p>c) Indicate that the Lie algebra structure (itself determined by the differentiable structure of G) uniquely determines the analytic structure. </p><p>3</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us