Rydberg Atoms

Rydberg Atoms

Rydberg atoms Tobias Thiele References • T. Gallagher: Rydberg atoms Content • Part 1: Rydberg atoms • Part 2: A typical beam experiment Introduction – What is „Rydberg“? • Rydberg atoms are (any) atoms in state with high principal quantum number n. Introduction – What is „Rydberg“? • Rydberg atoms are (any) atoms in state with high principal quantum number n. • Rydberg atoms are (any) atoms with exaggerated properties Introduction – What is „Rydberg“? • Rydberg atoms are (any) atoms in state with high principal quantum number n. • Rydberg atoms are (any) atoms with exaggerated properties equivalent! Introduction – How was it found? • In 1885: Balmer series: – Visible absorption wavelengths of H: bn2 n2 4 – Other series discovered by Lyman, Brackett, Paschen, ... – Summarized by Johannes Rydberg: Introduction – How was it found? • In 1885: Balmer series: – Visible absorption wavelengths of H: bn2 n2 4 – Other series discovered by Lyman, Brackett, Paschen, ... – Summarized by Johannes Rydberg: Introduction – How was it found? • In 1885: Balmer series: – Visible absorption wavelengths of H: bn2 n2 4 – Other series discovered by Lyman, Brackett, Paschen, ... Ry – Summarized by Johannes Rydberg: ~ ~ n2 Introduction – Generalization • In 1885: Balmer series: – Visible absorption wavelengths of H: bn2 n2 4 – Other series discovered by Lyman, Brackett, Paschen, ... ~ ~ Ry – Quantum Defect was found for other atoms: 2 (n l ) Introduction – Rydberg formula? • Energy follows Rydberg formula: hRy E E 2 (n l ) Introduction – Rydberg formula? • Energy follows Rydberg formula: hRy 13.6 eV E E 2 (n l ) Introduction – Hydrogen? • Energy follows Rydberg formula: 13.6 eV 0 hRy hRy E E 2 2 (n l ) n 0 0 Energy Quantum Defect? • Energy follows Rydberg formula: hRy E E 2 (n l ) Quantum Defect 0 Energy Rydberg Atom Theory e • Rydberg Atom A • Almost like Hydrogen – Core with one positive charge – One electron • What is the difference? Rydberg Atom Theory e • Rydberg Atom A • Almost like Hydrogen – Core with one positive charge – One electron • What is the difference? Rydberg Atom Theory e • Rydberg Atom A • Almost like Hydrogen – Core with one positive charge – One electron • What is the difference? Rydberg Atom Theory e • Rydberg Atom A • Almost like Hydrogen – Core with one positive charge – One electron • What is the difference? – No difference in angular momentum states Radial parts-Interesting regions W 1 V (r) r 0 r Radial parts-Interesting regions W 1 1 V (r) V (r) V (r) r r core 0 r Radial parts-Interesting regions W r r0 Ion core 1 1 V (r) V (r) V (r) r r core 0 r Radial parts-Interesting regions W r r0 Ion core 1 1 V (r) V (r) V (r) r r core 0 r Interesting Region For Rydberg Atoms Radial parts-Interesting regions W r r0 Ion core 1 1 V (r) V (r) V (r) r r core 0 r H Radial parts-Interesting regions W r r0 Ion core 1 1 V (r) V (r) V (r) r r core 0 r H nH Radial parts-Interesting regions W r r0 Ion core 1 1 V (r) V (r) V (r) r r core 0 r δl H nH 1 (Helium) Energy Structure W 2 2(n l ) • l usually measured – Only large for low l (s,p,d,f) • He level structure • is big for s,p 1 (Helium) Energy Structure W 2 2(n l ) • l usually measured – Only large for low l (s,p,d,f) • He level structure • is big for s,p 1 (Helium) Energy Structure W 2 2(n l ) • l usually measured – Only large for low l (s,p,d,f) • He level structure • l is big for s,p 1 (Helium) Energy Structure W 2 2(n l ) • l usually measured – Only large for low l (s,p,d,f) • He level structure • l is big for s,p Excentric orbits penetrate into core. Large deviation from Coulomb. Large phase shift-> large quantum defect 1 (Helium) Energy Structure W 2 2(n l ) • l usually measured – Only large for low l (s,p,d,f) • He level structure • l is big for s,p dW 1 • 3 dn (n l ) 1 W Electric Dipole Moment 2 2(n l ) • Electron most of the time far away from core – Strong electric dipole: – Proportional to transition matrix element dW 1 3 dn (n l ) 1 W Electric Dipole Moment 2 2(n l ) • Electron most of the time far away from core – Strong electric dipole: d er – Proportional to transition matrix element dW 1 3 dn (n l ) 1 W Electric Dipole Moment 2 2(n l ) • Electron most of the time far away from core – Strong electric dipole: d er – Proportional to transition matrix element f d i e f r i e f r cos() i dW 1 3 dn (n l ) 1 W Electric Dipole Moment 2 2(n l ) • Electron most of the time far away from core – Strong electric dipole: d er – Proportional to transition matrix element f d i e f r i e f r cos() i • We find electric Dipole Moment 2 – f d i r l 1 cos()l n • dWCross Section:1 3 dn (n l ) 2 d a0n 1 W Electric Dipole Moment 2 2(n l ) • Electron most of the time far away from core – Strong electric dipole: d er – Proportional to transition matrix element f d i e f r i e f r cos() i • We find electric Dipole Moment 2 – f d i r l 1 cos()l n • dWCross Section:1 r 2 n4 3 dn (n l ) 2 4 d a0n n 1 W Stark Effect H H0 dF E2 2(n l ) • For non-Hydrogenic Atom (e.g. Helium) – „Exact“ solution by numeric diagonalization of f H i f H0 i f d i F in undisturbed (standard) basis ( n~ ,l,m) dW 1 3 dn (n l ) 2 4 d a0n n 1 W Stark Effect H H0 dF E2 2(n l ) • For non-Hydrogenic Atom (e.g. Helium) – „Exact“ solution by numeric diagonalization of f H i f H0 i f d i F in undisturbed (standard) basis ( n~ ,l,m) 1 W dW 1 2 2(n l ) 3 dn (n l ) 2 4 d a0n n 1 W Stark Effect H H0 dF E2 2(n l ) • For non-Hydrogenic Atom (e.g. Helium) – „Exact“ solution by numeric diagonalization of f H i f H0 i f d i F in undisturbed (standard) basis ( n~ ,l,m) 1 W dW 1 2 Numerov 2(n l ) 3 dn (n l ) 2 4 d a0n n Stark Map Hydrogen n=13 n=12 n=11 Stark Map Hydrogen n=13 Levels degenerate n=12 n=11 Stark Map Hydrogen n=13 k=-11 blue n=12 k=11 red n=11 Stark Map Hydrogen n=13 Levels degenerate n=12 Cross perfect Runge-Lenz vector conserved n=11 Stark Map Helium n=13 n=12 n=11 Stark Map Helium n=13 Levels not degenerate n=12 n=11 Stark Map Helium n=13 k=-11 blue n=12 k=11 red n=11 Stark Map Helium n=13 k=-11 blue n=12 s-type k=11 red n=11 Stark Map Helium n=13 Levels degenerate n=12 Do not cross! No coulomb-potential n=11 Stark Map Helium Inglis-Teller Limit n-5 n=13 n=12 n=11 Hydrogen Atom inH an electricH0 dF Field E • Rydberg Atoms very sensitive to electric fields – Solve: in parabolic coordinates • Energy-Field dependence: Perturbation-Theory 1 3 F 4 2 2 2 5 W F(n1 n2 )n n 17n 3(n1 n2 ) 9m 19 O(n ) 2n2 2 16 n1 n2 k 1 W Hydrogen Atom in an electric Field 2 2(n l ) • When do Rydberg atoms ionize? – No field applied – Electric Field applied – Classical ionization: dW– Valid only1 for • Non-H atoms3 if F is dn (n l ) Increased slowly 2 4 5 d a0n n FIT n 1 W Hydrogen Atom in an electric Field 2 2(n l ) • When do Rydberg atoms ionize? – No field applied – Electric Field applied – Classical ionization: dW– Valid only1 for • Non-H atoms3 if F is dn (n l ) Increased slowly 2 4 5 d a0n n FIT n 1 W Hydrogen Atom in an electric Field 2 2(n l ) • When do Rydberg atoms ionize? – No field applied – Electric Field applied 1 – Classical ionization: F 1 cl 16n4 V Fz r W 2 1 F cl 4 16n4 dW– Valid only1 for • Non-H atoms3 if F is dn (n l ) Increased slowly 2 4 5 F 1 n4 d a0n n FIT n cl 16 1 W Hydrogen Atom in an electric Field 2 2(n l ) • When do Rydberg atoms ionize? – No field applied – Electric Field applied 1 – Classical ionization: F 1 cl 16n4 V Fz r W 2 1 F cl 4 16n4 dW– Valid only1 for • Non-H atoms3 if F is dn (n l ) Increased slowly 2 4 5 F 1 n4 d a0n n FIT n cl 16 1 W Hydrogen Atom in an electric Field 2 2(n l ) • When do Rydberg atoms ionize? – No field applied – Electric Field applied 1 – Quasi-Classical ioniz.: F cl 16n4 Z m2 1 F V () 2 2 2 4 4 m0 W 2 dW F 1 3 4Z2 dn (n l ) 2 4 5 F 1 n4 d a0n n FIT n cl 16 1 W Hydrogen Atom in an electric Field 2 2(n l ) • When do Rydberg atoms ionize? – No field applied – Electric Field applied 1 – Quasi-Classical ioniz.: F cl 16n4 2 1 Z2 m 1 F F V () 2 r 9n4 2 4 4 2 1 dWm0 W 1 F 4 red 9n3 4Z2 dn (n l ) 2 4 5 F 1 n4 d a0n n FIT n cl 16 1 W Hydrogen Atom in an electric Field 2 2(n l ) • When do Rydberg atoms ionize? – No field applied – Electric Field applied 2 Fb 9n4 1 – Quasi-Classical ioniz.: F cl 16n4 2 1 Z2 m 1 F Fr V () 2 9n4 2 4 4 1 2 dW W 1 4 red F 9n 2 3 4Z2 dn (n l )4 blue 9n 2 4 5 F 1 n4 d a0n n FIT n cl 16 Hydrogen Atom in an electric Field Blue states Red states classic Inglis-Teller 1 W Lifetime 2 2(n l ) • From Fermis golden rule – Einstein A coefficient for two states n,l n,l 2 3 4e n,l,n,l max(l,l) 2 An,l,n,l nl r nl 3c3 2l 1 – Lifetime dW 1 3 dn (n l ) 2 4 5 F 1 n4 d a0n n FIT n cl 16 1 W Lifetime 2 2(n l ) • From Fermis golden rule – Einstein A coefficient for two states n,l n,l 2 3 4e max(l,l) 2 n,l,n,l An,l,n,l 3 n l r nl 3c 2l 1 1 – Lifetime n,l An,l,n,l n,ln,l dW 1 3 dn (n l ) 2 4 5 F 1 n4 d a0n n FIT n cl 16 1 W Lifetime 2 2(n l ) • From Fermis golden rule – Einstein A coefficient for two states n,l n,l 2 3 4e max(l,l) 2 n,l,n,l An,l,n,l 3 n l r nl 3c 2l 1 1 – Lifetime n,l An,l,n,l n,ln,l dW 1 3 dn (n l ) 2 4 5 F 1 n4 d a0n n FIT n cl 16 1 W Lifetime 2 2(n l ) • From Fermis golden rule – Einstein A coefficient for two states n,l n,l 2 3 4e max(l,l) 2 n,l,n,l An,l,n,l 3 n l r nl 3c 2l 1 1 3 For l0: n 2

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    78 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us