Hybrid Estimation of Distribution Algorithm for Solving Single Row

Hybrid Estimation of Distribution Algorithm for Solving Single Row

Computers & Industrial Engineering 66 (2013) 95–103 Contents lists available at SciVerse ScienceDirect Computers & Industrial Engineering journal homepage: www.elsevier.com/locate/caie Hybrid Estimation of Distribution Algorithm for solving Single Row Facility Layout Problem ⇑ Chao Ou-Yang a, , Amalia Utamima a,b a Department of Industrial Management, National Taiwan University of Science and Technology, Taipei City, 106, Taiwan, ROC b Information System Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia article info abstract Article history: The layout positioning problem of facilities on a straight line is known as Single Row Facility Layout Prob- Received 18 July 2012 lem (SRFLP). The objective of SRFLP, categorized as NP Complete problem, is to arrange the layout so that Received in revised form 23 May 2013 the sum of distances between all facilities’ pairs can be minimized. Accepted 31 May 2013 Estimation of Distribution Algorithm (EDA) efficiently improves the solution quality in first few runs, Available online 12 June 2013 but the diversity loss grows rapidly as more iterations are run. To maintain the diversity, hybridization with metaheuristic algorithms is needed. This research proposes Hybrid Estimation of Distribution Algo- Keywords: rithm (EDAhybrid), an algorithm which consists of hybridization of EDA, Particle Swarm Optimization Single row facility layout (PSO), and Tabu Search. Another hybridization algorithm, extended Artificial Chromosomes Genetic Algo- Estimation of Distribution Algorithm Particle Swarm Optimization rithm (eACGA), is also built as benchmark. EDAhybrid’s performance is tested in 15 benchmark problems Tabu Search of SRFLP and it successfully achieves optimum solution. Moreover, the mean error rates of EDAhybrid always get the lowest value compared to other algorithms. SRFLP can be enhanced by considering more constraints, so it becomes enhanced SRFLP. Computational results show that EDAhybrid can also solve Enhanced SRFLP effectively. Therefore, we can conclude that EDAhybrid is a promising metaheuristic algorithm which can be used to solve the basic and enhanced SRFLP. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction optimization problems (Zhang & Muhlenbein, 2004). Moreover, EDAs are predicted to potentially effective to solve SRFLP. EDAs The Single Row Facility Layout Problem (SRFLP) is taken into may cause overfitting in the search space and cannot provide the account when multiple products with different production vol- general information (Santana, Larrañaga, & Lozano, 2008). EDAs umes and different process routings need to be manufactured. efficiently improve the solution quality in the first few runs, but The objective of SRFLP is to set up the facilities so that sum of the diversity loss grows rapidly as more iteration is run. To main- the distances between all facility pairs can be minimized (Amaral, tain the diversity, hybridization with metaheuristic algorithm is 2006). Because SRFLP is proven to be a Nondeterministic Polyno- needed. EDAs are used to characterize the parental solutions and mial-time (NP) Complete problem, the exact methods applied to to search around the current solution space. After that, metaheu- large instances of the problem are time consuming. Hence, heuris- ristics might introduce new solutions into the population to main- tic methods are built to acquire a near optimal solution to the tain diversity, which can avoid the spremature convergence of problem (Samarghandi & Eshghi, 2010). EDAs (Chen, Chen, Chang, & Chen, 2012). Existing researches which applied metaheuristics have contrib- This study proposes Hybrid Estimation of Distribution Algo- uted to solve the SRFLP. Despite its contribution, each study, in fact, rithm (EDAhybrid), an algorithm which consists of hybridization has particular benefits and limitations. By solving SRFLP effectively, of Estimation of Distribution Algorithm (EDA), Particle Swarm it is hoped that an algorithm can also succeed in solving the differ- Optimization (PSO), and Tabu Search algorithm to surmount the ent cases of Facility Layout Problem. basic and enhanced SRFLP. PSO is utilized as metaheuristic algo- Estimation of Distribution Algorithms (EDAs) are stochastic rithm for maintaining the diversity of EDA. Tabu Search explores optimization techniques that explore the space of potential the global best value achieved in every iteration. Other hybridiza- solutions by exploiting the inter variable dependency and sam- tion algorithm is built as benchmark; that is extended Artificial pling probabilistic models of promising candidate solutions (Haus- Chromosomes Genetic Algorithm (eACGA). child & Pelikan, 2011). Therefore, they could efficiently solve hard The objectives of this research are as follows: a. To develop EDAhybrid, a new meta-heuristic algorithm which ⇑ Corresponding author. Tel.: +886 2 27376340. is the hybridization of Estimation of Distribution Algorithm, E-mail address: [email protected] (C. Ou-Yang). Particle Swarm Optimization, and Tabu Search Algorithm. 0360-8352/$ - see front matter Ó 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.cie.2013.05.018 96 C. Ou-Yang, A. Utamima / Computers & Industrial Engineering 66 (2013) 95–103 b. To design an enhanced Single Row Facility Layout Problem and Figueira (2011) offer permutation based genetic algorithm that considers more constraints which include not only flow, with specially designed crossover and mutation operators for get- length, and clearance space, but also the installation cost and ting optimal solution of SRFLP. safety reason. The detail of this objective is explained in Section 2.3. 2.3. Enhanced Single Row Facility Layout Problem c. To apply EDAhybrid algorithm to solve the basic and enhanced Single Row Facility Layout Problems. Minimizing material-handling costs and providing a safe work- place for employees are the main considerations in the design of 2. Literatures review manufacturing layouts (Heragu, 2008). In each case, a number of suitable locations might be available; however, the cost of assigning 2.1. Estimation of Distribution Algorithms a machine might differ in each location. It could depend on such fac- tors as the existing condition of the site and/or the modification Estimation of Distribution Algorithms (EDAs) are stochastic needed to the foundation likewise as the environs (Sule, 2009). optimization techniques that explore the space of potential solu- According to Drira, Pierreval, and Hajri-Gabouj (2007), the objec- tions by exploiting the inter variable dependency and sampling tives of research in facility layout problem at manufacturing indus- probabilistic models of promising candidate solutions (Hauschild try are minimizing space cost (for unequal size facility), handling & Pelikan, 2011). EDAs construct a probabilistic model to get the cost, rearrangement cost (for dynamic layout), backtracking and parental distribution and sample new solutions (Pelikan, Goldberg, bypassing, traffic congestion (for cellular layout), and shape irregu- & Lobo, 2002). EDAs make use of sampling from probabilistic mod- larities (for unequal size facility). In SRFLP, the objectives of related els that avoid the disruption of partial dominant solutions (Santana researches (Amaral, 2009; Samarghandi et al., 2010; Solimanpur et al., 2008) and they makes differentiation from Genetic Algo- et al., 2005) usually focus on minimizing the weighted sum of dis- rithms (GAs). EDAs might be a powerful method capable of captur- tances by considering length of facilities and total materials flowing ing and manipulating the building blocks of chromosomes. between facilities so that material handling cost can be minimized. Therefore, they could efficiently solve hard optimization problems Heragu (2008) presents case study about real world problem in (Zhang & Muhlenbein, 2004). The complete reviews of EDAs are manufacturing company that consider technological constraint in a presented by Lozano et al. (2006) and Hauschild and Pelikan (2011). layout positioning. The technological constraint here means two The Extended Artificial Chromosome Genetic Algorithm (eAC- facilities cannot be adjacent by each other. This kind of constraint, GA) is derived from Artificial Chromosome with Genetic algorithm which cannot put the specified two facilities by each other, in con- (ACGA), an algorithm that joins EDA and GA in effective manner struction site layout problem is called safety constraint (Mawdesley (Chen et al., 2012). ACGA is able to interpret parental distribution & Al-Jibouri, 2003). In another book, Sule (2009) presents a fixed by sampling new solutions from the univariate probabilistic mod- cost concept that already described earlier about the cost for install- els and also genetic operators. The main difference characteristic of ing a facility that might differ in each location. probabilistic models in ACGA compared to most EDAs is ACGA Combining these two ideas, we can enhance the SRFLP objective samples new individuals periodically whereas EDAs generate function to be more comprehensive and more applicable in real new solutions entirely (Chang, Hsieh, Chen, Lin, & Huang, 2009). case by considering fixed cost and safety constraints. This problem ACGA was used to chip resistor scheduling problem (Chang et al., is labeled as Enhanced SRFLP. 2009) in order to accelerate the convergence rate in GA. A research has proposed eACGA as a solution for scheduling 3. Problem statement problems. In (Chen et al., 2012), ACGA is improved as eACGA

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us