An Approach to the Design of Surface Stress-Based PDMS Micro-Membrane Biosensors — Concept, Numerical Simulations and Prototypes

An Approach to the Design of Surface Stress-Based PDMS Micro-Membrane Biosensors — Concept, Numerical Simulations and Prototypes

An approach to the design of surface stress-based PDMS micro-membrane biosensors — Concept, Numerical simulations and Prototypes (PDMS-Mikro-Membran-Biosensoren auf Basis der Analyse von Oberflächenspannungen — Konzept, numerische Simulation und Prototypenbau) Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) vorgelegt der Fakultät für Maschinenbau der Technischen Universität Ilmenau von M.-Eng. Shengbo Sang geboren am 24. April 1979 in Shandong, P.R. China urn:nbn:de:gbv:ilm1-2010000423 Tag der Einreichung: 15. Juni 2010 Tag der Verteidigung: 12. November 2010 1. Gutachter: Univ.-Prof. Dipl.-Ing. Dr. med. (habil.) Hartmut Witte (Technische Universität Ilmenau) 2. Gutachter: Prof. Dr.-Ing. Klaus Liefeith (Institut für Bioprozess- und Analysenmesstechnik e.V.) 3. Gutachter: Professor Dr.-Ing. Theodor Doll (Johannes-Gutenberg-Universität Mainz) Acknowledgments Taking the chance, I would like to acknowledge a number of people who have contributed to the development of this thesis and to my overall experience as a PhD student at Ilmenau University of Technology. First and foremost, I would like to thank my supervisor Professor Hartmut Witte for having given me the opportunity to conduct research in the exciting field of BioMEMS. I am also deeply indebted to him for his support, encouragement and guidance as well as the freedom he gave me to work on areas of my interest during my graduate study. The professional interaction with my colleagues in biomechatronic group has had a significant influence on my research work, especial Dipl.-Ing. Ulrike Fröber, Dipl.-Ing. Mike Stubenrauch. I would also like to thank Dr. Arne Albrecht, Dipl.-Ing. Lars Dittrich and other colleagues in the Center for Micro- and Nanotechnologies (ZMN) for their help and support to the fabrication. Thanks to Prof. Michael Köhler, Dipl.-Ing. Jialan Cao, M.Sc. Shuning Li and Dipl.-Ing. Steffen Schneider in the Department of Physical Chemistry and Microreaction Technology. They not only provided me free the functional chemical material and the media with E.coli, but technological advices and supports. Thank also to Dipl.-Ing. Daniel Kapusi and Dipl.-Ing. Torsten Machleidt in Department of Computer Sciences and Automation for the free use of smart white light interferometer system and technological support. I would also like to acknowledge the help and support from other colleagues and friends, both past and present, namely (in no particular order) Dr. Cornelius Schilling, Dr. Emanuel Andrada, Dipl.-Inf. Silvia Lehmann, Kerstin Schmidt, Wolfgang Kempf. I would also give thank to my family for their encouragement, support and motivation throughout my entire life. The uncompromising attitude of my family towards my education through difficult times is greatly responsible for what I have achieved today and the gratitude that I have for them cannot be expressed in simple words. Finally, I would like to dedicate my dissertation to my passed away father. I miss and love him very much all the time. Abstract BioMEMS (Biological Micro-Electro-Mechanical Systems) technology, especially for biosensors, plays a critical role in the process of information gathering with the technologically advanced development of our civilization. “Surface stress-based biosensors” are a relatively new class of biosensors, which make use of the free energy change, the underlying concept in any binding reaction, and hence offer a universal platform for biological or chemical sensing. In the dissertation, a new surface stress-based polydimethylsiloxane (PDMS) micro membrane biosensor is proposed, designed, fabricated and tested. The biosensor is made of two main conponents: microfluidics and sensor. Each sensor consists of two micro membranes, one acts as active membrane and the other as reference. This design has sensitive surface stress measurements associated with specific analytes interactions on the active membrane’s surface. The biosensors were fabricated successfully conquering many challenges in design and fabrication, like integration of PDMS processing with conventional microfabrication processes, fabrication of “perfect” PDMS thin films and release of PDMS membranes. Furthermore, the bonding technology, uncured PDMS as the intermediate layer method for the bond between biosensors and microfluidic devices or components, was studied and tested and the bond strength is close to the bulk PDMS. Two biosensor test systems were built for testing the biosensor and its application. One is with a smart white light interferometer (smartWLI), and another is with a fiber optic interferometer (FOI). The smartWLI-based biosensor test system has a better spatial resolution (1 nm), and the FOI-based biosensor test system has a higher time resolution (< 0.5 sec.). Three alkanethiol molecules with different functional end groups were tested as the membrane coating layer for E. coli detection. The results of the experiments showed that the MUA is a better functional material to functionalize the biosensor membranes than MUO and DOT. The status of E. coli can be measured based on the surface analysis. Furthermore, the properties can be analyzed according to the change of membrane deflection. Zusammenfassung Die BioMEMS(Biological Micro-Electro-Mechanical Systems)-Technologie spielt vor allem für Biosensoren eine entscheidende Rolle im Prozess der Informationsbeschaffung für die technologisch fortschreitende Entwicklung unserer Zivilisation. „Oberflächenspannungsbasierte Biosensoren“ sind eine relativ neue Klasse von Biosensoren, welche die Änderung der freien Energie nutzen (das zugrunde liegende Prinzip jeder Bindungsreaktion), und bieten somit eine universelle Plattform für biologische oder chemische Sensorik. In der Dissertationsschrift wird ein neuer oberflächenspannungsbasierter Polydimethylsiloxan (PDMS)- Mikro-Membran-Biosensor vorgeschlagen, konstruiert, gefertigt und getestet. Der Biosensor besteht aus zwei Haupt-Funktionskomponenten: Mikrofluidik und Sensorik. Jeder Sensor besteht aus zwei Mikro-Membranen, einer aktiven Membran und einer Referenzmembran. Die Biosensoren wurden erfolgreich unter Bewältigung vieler Herausforderungen aufgebaut. Diese lagen insbesondere in den Bereichen Design und Herstellung, wie zum Beispiel der Integration der PDMS-Mikroverarbeitung mit herkömmlichen Verfahren, der Herstellung von „perfekten“ PDMS-Dünnschichten und der Gewinnung der PDMS-Membran. Darüber hinaus wurde eine Klebetechnik, welche unausgehärtes PDMS als Zwischenschicht für die Bindung zwischen Biosensor und Mikrofluidikkomponenten oder -bauteilen nutzt, untersucht und getestet. Für die Prüfung und Anwendung der Biosensoren wurden zwei Biosensor- Testsysteme eingerichtet. Eines mit einem „smart Weißlichtinterferometer“ (smartWLI) und ein anderes mit einem „Fiberoptic Interferometer“ (FOI). Drei Alkanthiol-Moleküle mit verschiedenen funktionellen Endgruppen wurden als Biosensor-Überzugsschichten für die Anwendung getestet. MUA ist das derzeit beste „funktionelle“ Material, um die Membran für den Nachweis von E. coli zu funktionalisieren. Der PDMS-Mikro-Membran-Biosensor auf Basis der Analyse von Oberflächenspannungen besitzt gute Empfindlichkeit, Reproduzierbarkeit und Biokompatibilität. Der Zustand von E. coli-Bakterien kann auf der Grundlage der Analyse der Oberflächenspannungen gemessen werden. Table of contents Index of figures .......................................................................................................... III Index of Tables ......................................................................................................... VII Nomenclature ............................................................................................................ IX Chapter 1 Introduction ................................................................................................ 1 1.1 Overview on BioMEMS ..................................................................................... 1 1.2 Biosensors ........................................................................................................ 3 1.2.1 Glucose biosensors.................................................................................... 8 1.2.2 Cell-based biosensors ................................................................................ 9 1.2.3 Mirofluidic devices or components for biosensors .................................... 11 1.2.4 Detection method ..................................................................................... 13 Conclusions for development process .................................................................. 22 Chapter 2 Biosensor Design..................................................................................... 23 2.1 Biological environmental requirement ............................................................. 23 2.1.1 Substrate .................................................................................................. 23 2.1.2 Temperature............................................................................................. 24 2.1.3 Medium..................................................................................................... 24 2.1.4 Gas phase ................................................................................................ 25 2.1.5 Aseptic environment................................................................................. 27 2.1.6 Cytotoxicity ............................................................................................... 27 2.2 Theory of

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    157 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us