Wavelets and Their Applicationsnon-Standard Haar Non-Standard Flatlet 2 in Computer Graphics

Wavelets and Their Applicationsnon-Standard Haar Non-Standard Flatlet 2 in Computer Graphics

SIGGRAPH '95 Course Notes a[n/4] a[n/8]H* a[1] H* a[n/2] d[1] H* G* G* H* d[n/8] G* Non-standard Haar Non-standard Flatlet 2 d[n/4] f[n] = a[n] d[n/2] G* Wavelets and their ApplicationsNon-standard Haar Non-standard Flatlet 2 in Computer Graphics AAA ... (a)B (b)B ... (c) Wavelet coefficients Wavelet coefficients Organizer: Alain Fournier University of British Columbia 0.8 3 scaling function scaling function wavelet wavelet 0.6 2 0.4 1 0.2 0 0 -0.2 -1 -0.4 -2 -0.6 -0.8 -3 0 50 100 150 200 250 300 350 400 0 100 200 300 400 500 600 700 Nothing to do with sea or anything else. Over and over it vanishes with the wave. ± Shinkichi Takahashi Lecturers Michael F. Cohen Microsoft Research One Microsoft Way Redmond, WA 98052 [email protected] Tony D. DeRose Department of Computer Science and Engineering FR-35 University of Washington Seattle, Washington 98195 [email protected] Alain Fournier Department of Computer Science University of British Columbia 2366 Main Mall Vancouver, British Columbia V6T 1Z4 [email protected] Michael Lounsbery Alias Research 219 S. Washington St. P.O. Box 4561 Seattle, WA 98104 [email protected] Leena-Maija Reissell Department of Computer Science University of British Columbia 2366 Main Mall Vancouver, British Columbia V6T 1Z4 [email protected] Peter SchroderÈ Department of Computer Science Le Conte 209F University of South Carolina Columbia, SC 29208 [email protected] Wim Sweldens Department of Mathematics University of South Carolina Columbia, SC 29208 [email protected] Table of Contents Preamble ± Alain Fournier 1 1 Prolegomenon :: ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 1 I Introduction ± Alain Fournier 5 1 Scale : ::: ::: ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 5 1.1 Image pyramids ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 5 2 Frequency : ::: ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 7 3 The Walsh transform :: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 8 4 Windowed Fourier transforms ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 10 5 Relative Frequency Analysis : ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 12 6 Continuous Wavelet Transform :: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 12 7 From Continuous to Discrete and Back ::: ::: ::: ::: ::: :: ::: ::: ::: : 13 7.1 Haar Transform ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 13 7.2 Image Pyramids Revisited : :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 14 7.3 Dyadic Wavelet Transforms :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 15 7.4 Discrete Wavelet Transform :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 16 7.5 Multiresolution Analysis :: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 17 7.6 Constructing Wavelets ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 17 7.7 Matrix Notation ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 19 7.8 Multiscale Edge Detection : :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 19 8 Multi-dimensional Wavelets : ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 20 8.1 Standard Decomposition :: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 20 8.2 Non-Standard Decomposition : ::: ::: ::: ::: ::: :: ::: ::: ::: : 20 8.3 Quincunx Scheme :: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 21 9 Applications of Wavelets in Graphics : ::: ::: ::: ::: ::: :: ::: ::: ::: : 21 9.1 Signal Compression : ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 21 9.2 Modelling of Curves and Surfaces :: ::: ::: ::: ::: :: ::: ::: ::: : 33 9.3 Radiosity Computations :: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 33 10 Other Applications ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 33 II Multiresolution and Wavelets ± Leena-Maija Reissell 37 1 Introduction ::: ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 37 1.1 A recipe for ®nding wavelet coef®cients :: ::: ::: ::: :: ::: ::: ::: : 37 1.2 Wavelet decomposition :: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 40 1.3 Example of wavelet decomposition : ::: ::: ::: ::: :: ::: ::: ::: : 41 1.4 From the continuous wavelet transform to more compact representations :: ::: : 42 2 Multiresolution: de®nition and basic consequences ::: ::: ::: :: ::: ::: ::: : 43 2.1 Wavelet spaces : ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 44 2.2 The re®nement equation :: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 46 2.3 Connection to ®ltering ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 46 2.4 Obtaining scaling functions by iterated ®ltering : ::: ::: :: ::: ::: ::: : 47 3 Requirements on ®lters for multiresolution : ::: ::: ::: ::: :: ::: ::: ::: : 52 3.1 Basic requirements for the scaling function ::: ::: ::: :: ::: ::: ::: : 52 3.2 Wavelet de®nition :: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 53 3.3 Orthonormality ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 54 3.4 Summary of necessary conditions for orthonormal multiresolution :: ::: ::: : 55 3.5 Suf®ciency of conditions : :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 56 3.6 Construction of compactly supported orthonormal wavelets :: ::: ::: ::: : 58 3.7 Some shortcomings of compactly supported orthonormal bases : ::: ::: ::: : 61 4 Approximation properties :: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 61 4.1 Approximation from multiresolution spaces ::: ::: ::: :: ::: ::: ::: : 61 4.2 Approximation using the largest wavelet coef®cients : ::: :: ::: ::: ::: : 64 4.3 Local regularity ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 64 5 Extensions of orthonormal wavelet bases :: ::: ::: ::: ::: :: ::: ::: ::: : 65 5.1 Orthogonalization :: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 66 5.2 Biorthogonal wavelets ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 66 5.3 Examples ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 68 5.4 Semiorthogonal wavelets : :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 68 5.5 Other extensions of wavelets :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 69 5.6 Wavelets on intervals ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 69 III Building Your Own Wavelets at Home ± Wim Sweldens, Peter SchrÈoder 71 1 Introduction ::: ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 71 2 Interpolating Subdivision :: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 72 2.1 Algorithm ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 72 2.2 Formal Description* : ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 74 3 Average-Interpolating Subdivision : :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 76 3.1 Algorithm ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 76 3.2 Formal Description* : ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 79 4 Generalizations : ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 81 5 Multiresolution Analysis ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 83 5.1 Introduction :: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 83 5.2 Generalized Re®nement Relations :: ::: ::: ::: ::: :: ::: ::: ::: : 84 5.3 Formal Description* : ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 84 5.4 Examples ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 85 5.5 Polynomial Reproduction : :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 85 5.6 Subdivision :: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 86 5.7 Coarsening ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 86 5.8 Examples ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 87 6 Second Generation Wavelets : ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 88 6.1 Introducing Wavelets ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 88 6.2 Formal Description* : ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 90 7 The Lifting Scheme :: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 91 7.1 Lifting and Interpolation: An Example :: ::: ::: ::: :: ::: ::: ::: : 91 7.2 Lifting: Formal Description* : ::: ::: ::: ::: ::: :: ::: ::: ::: : 93 7.3 Lifting and Interpolation: Formal description :: ::: ::: :: ::: ::: ::: : 94 7.4 Wavelets and Average-Interpolation: An Example ::: ::: :: ::: ::: ::: : 95 7.5 Wavelets and Average-Interpolation: Formal description* :: :: ::: ::: ::: : 98 8 Fast wavelet transform : ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: : 98 9Examples: ::: ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: :100 9.1 Interpolation of Randomly Sampled Data : ::: ::: ::: :: ::: ::: ::: :100 9.2 Smoothing of Randomly Sampled Data :: ::: ::: ::: :: ::: ::: ::: :102 9.3 Weighted Inner Products :: :: ::: ::: ::: ::: ::: :: ::: ::: ::: :103 10 Warning :: ::: ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: :104 11 Outlook :: ::: ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: :105 IV Wavelets, Signal Compression and Image Processing ± Wim Sweldens 107 1 Wavelets and signal compression : :: ::: ::: ::: ::: ::: :: ::: ::: ::: :107 1.1 The need for compression : :: ::: ::: ::: ::: ::: :: ::: ::: ::: :107 1.2 General idea :: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: :108 1.3 Error measure : ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: :110 1.4 Theory of wavelet compression ::: ::: ::: ::: ::: :: ::: ::: ::: :110 1.5 Image compression : ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: :111 1.6 Video compression :: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: :116 2 Wavelets and image processing :: :: ::: ::: ::: ::: ::: :: ::: ::: ::: :117 2.1 General idea :: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: :117 2.2 Multiscale edge detection and reconstruction :: ::: ::: :: ::: ::: ::: :117 2.3 Enhancement : ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: :120 2.4 Others :: ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: :121 V Curves and Surfaces ± Leena-Maija Reissell, Tony D. DeRose, Michael Lounsbery 123 1 Wavelet representation for curves (L-M. Reissell) : ::: ::: ::: :: ::: ::: ::: :123 1.1 Introduction :: ::: ::: :: ::: ::: ::: ::: ::: :: ::: ::: ::: :123 1.2 Parametric wavelet decomposition notation :::

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    239 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us