CE2112: Laboratory Determination of Soil Properties and Soil Classification Laboratory Report G1: Index and Consolidation Properties G2 Shear Strength Year 2013/2014 Semester 2 PENG LE A0115443N 1 Table of Contents 1. Executive Summary ................................................................................................................ 4 2. Overview .................................................................................................................................. 5 3. Atterberg Limits Tests ........................................................................................................... 6 3.1. Principles ............................................................................................................................ 6 3.2. Plastic Limit (PL) ............................................................................................................... 7 3.3. Liquid Limit (LL) ............................................................................................................... 8 3.4. Classification of the Soil .................................................................................................... 9 3.5. Discussion......................................................................................................................... 10 4. One Dimension Consolidation Test .................................................................................... 11 4.1. Principles of One Dimension Consolidation Test ............................................................ 11 4.2. The Result of One Dimension Consolidation Test........................................................... 12 4.3. Casagrande’s Method to Determine cc, ca and pc’............................................................ 13 4.4. Casagrande’s log(time) Curve Fitting Method................................................................. 15 4.5. Summary of One Dimension Consolidation Test Result ................................................. 17 4.6. Discussion ........................................................................................................................ 18 5. Shear Strength Test ............................................................................................................. 19 5.1. Principles .......................................................................................................................... 19 5.2. Wood's Semi-Empirical Relation ..................................................................................... 20 5.3. Laboratory Vane Method ................................................................................................. 21 5.4. Penetrometer Test............................................................................................................. 22 5.5. Undrained Triaxial Test ................................................................................................... 23 2 5.6. Summary of Results for Three Samples........................................................................... 30 5.6. Discussions....................................................................................................................... 31 6. Assessment of Data .............................................................................................................. 32 6.1. Correlation of Atterberg Limits Test and 1D Consolidation Test.................................... 32 6.2. Correlation of Atterberg’s Limits Test and Tests for Undrained Shear Strength ............ 33 6.3. Comparison with Existing Guidelines.............................................................................. 34 7. Recommended Design Parameters .................................................................................... 36 APPENDICES .......................................................................................................................... 37 Appendix I: Test For Liquid Limit (cone penetrometer) and Plastic Limit ............................ 37 Appendix II: Water Content/Bulk Density for Consolidation Test......................................... 39 Appendix III: Calculations for Casagrande’s Method to Determine cs,cc and pc’................. 41 Appendix IV: Graphs and Calculations for Casagrande’s log(time) Curve Fitting Method .. 43 Appendix V: Water Content for Shear Strength Test ............................................................. 48 Appendix VI: Calculations for Wood's Semi-Empirical Relation .......................................... 49 Appendix VII: Calculations for Laboratory Vane Method ..................................................... 50 Appendix VIII: Calculations Pocket Penetrometer Method .................................................. 53 Appendix IX: Data and Results for UU Triaxial Test Result and Analysis............................ 56 3 1. Executive Summary Here is the summary of the recommended design parameters. Table 1.1. Summary of Design Parameters Parameters Values Plastic Limit (PL) 36% Liquid Limit (LL) 90% Plasticity Index (PI) 54% Soil Classification CH Compression Index (Cc) 0.280 Swelling Index(Cs) 0.0325 Pre-Consolidation Pressure (Pc’) 186±10 kPa -5 -4 2 Coefficient of Volume Change(mv) 6.0x10 ~ 1.2x10 m /kN 2 Coefficient of Volume Change (cv) 0.8~3.0 m /year Permeability (k) 3x10-11 7x10-11 Undrained Shear Strength (cu) 23.6 ±3.0 kPa 4 2. Overview Here is the summary of the tests done to find the parameters. Tests Parameters Antterberg’s Limits Test Plastic Limit (PL) Liquid Limit (LL) Plasticity Index (PI) One Dimension Consolidation Test Compression Index (cc) Swelling Index(cs) Pre-Consolidation Pressure (pc’) Coefficient of Volume Change(mv’) Coefficient of Volume Change (cv) Permeability (k) Wood’s Semi-Empirical Equations Undrained Shear Strength (cu) Laboratory Vane Method Miniature Cone Penetrometer Method Triaxial Test 5 3. Atterberg Limits Tests 3.1. Principles In Atterberg Limit tests, Liquid Limit (LL), Plastic Limit (PL) and Plastic Index (PI) are obtained, which can be used to classify the soil. 6 3.2. Plastic Limit (PL) Plastic limit is the minimum water content at which soil can be deformed plastically. To determine it, a soil sample (about 20g) is taken and rolled into a thread repeatedly using hand until slight cracks to appear as it thins down to about 3mm. Then the water content at this stage is measured and this value is the plastic limit. The plastic limit for this soil sample is 36.41%.1 1 The detailed calculation can be found on Appendix I. 7 3.3. Liquid Limit (LL) Cone penetration method is used to determine the liquid limit. A cone is penetrated into the sample and the penetration depth of the tip of the cone is recorded. The above steps are repeated for 4-5 times by keeping the penetration depth in the range of 15-25mm and the water content is determined for each trial. A graph of the cone penetration depth against the water content is plotted and the regression line is obtained. The water content corresponds to 20mm penetration depth in the graph is taken as the liquid limit. From the experiment, the liquid limit for this sample is 90.72%.2 2 The detailed calculation can be found on Appendix I. 8 3.4. Classification of the Soil The following result is produced in our test: Table 3.1. Summary of Atterberg Limit Test Plastic Limit (PL) 36.41% Liquid Limit (LL) 90.72% Plasticity Index (PI) (PI= LL-PL) 54.31% Using Plasticity chart for laboratory classification, the soil sample should be classified as CH. Soil Sample Fig. 3.1. Plasticity chart for laboratory classification of fine grained soil 9 3.5. Discussion The test on the PL is not very accurate as the judgement of “start to crack” and 3mm is very subjective. This may be improved by making more trials and taking the average. For the liquidity test, soil may not be thoroughly mixed and the value of water content may not be. Also, 4 values may not give a very good estimates and more tests can be done to improve the accuracy. 10 4. One Dimension Consolidation Test 4.1. Principles of One Dimension Consolidation Test In one dimension consolidation test, the soil sample is constrained so that it can only settle axially. Different loads are added from day one to day five and the change in height of the soil samples are measured. The void ratio and the void ratio changes can be calculated using the following equation: ∆퐻 ∆푒 = 퐻 (1 + 푒) The value of coefficient of volume changes 푚푣 can also be calculated using the following equation: −∆푒 푚푣 = ∆휎푣′(1 + 푒) The load added is summarized in the following table. Table 4.1. Load for Compression Test Day Load/kg 1 20 2 40 3 80 4 160 5 40 11 4.2. The Result of One Dimension Consolidation Test Table 4.2. Results of 1D Consolidation Test Day Load/kg Stress/kPa Height ∆H/mm ∆H/H ∆e e 푚푣 (H)/mm /푘푃푎−1 0 0 0.000 18.580 0.000 -- -- 0.883 -- 1 20 52.523 18.517 -0.063 -0.003 -0.006 0.877 6.478×10-5 2 40 105.045 18.372 -0.145 -0.008 -0.015 0.862 7.513×10-5 3 80 210.091 17.965 -0.407 -0.022 -0.041 0.821 1.078×10-4 4 160 420.182 17.138 -0.827 -0.046 -0.084 0.737 1.148×10-4 5 40 105.045 17.358 0.220 0.013 0.022 0.759 1.207×10-4 12 4.3. Casagrande’s Method to Determine cc, cs and pc’ In this method, the void ratio of the soil is plotted against the log(time). The slope of the virgin compression line gives the value of cc while the slope of the swelling line gives the value of cs. ratio,e Void Logarithm of Effective Vertical Stress, log (σ’)/log(kPa) Legend P Point of maximum Curvature CD Straight Line Backward from Virgin Compression Curve PR
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages63 Page
-
File Size-