The Invertible Matrix Theorem

The Invertible Matrix Theorem

Math 240 TA: Shuyi Weng Winter 2017 February 6, 2017 The Invertible Matrix Theorem Theorem 1. Let A 2 Rn×n. Then the following statements are equivalent. 1. A is invertible. 2. A is row equivalent to In. 3. A has n pivots in its reduced echelon form. 4. The matrix equation Ax = 0 has only the trivial solution. 5. The columns of A are linearly independent. 6. The linear transformation T defined by T (x) = Ax is one-to-one. 7. The equation Ax = b has at least one solution for every b 2 Rn. 8. The columns of A span Rn. 9. The linear transformation T defined by T (x) = Ax is onto. 10. There exists an n × n matrix B such that AB = In. 11. There exists an n × n matrix C such that CA = In. 12. AT is invertible. Theorem 2. Let T : Rn ! Rn be defined by T (x) = Ax. Then T is one-to-one and onto if and only if A is an invertible matrix. Problem. True or false (all matrices are assumed to be n × n, unless otherwise specified). 1. The identity matrix is invertible. 2. If A can be row reduced to the identity matrix, then it is invertible. 3. If both A and B are invertible, so is AB. 4. If A is invertible, then the matrix equation Ax = b is consistent for every b 2 Rn. n 5. If A is an n × n matrix such that the equation Ax = ei is consistent for each ei 2 R a column of the n × n identity matrix, then A is invertible. 6. If both A and B are invertible, then the inverse of AB is A−1B−1. 7. Every elementary matrix is invertible. " # a b 8. If A = , and ab − cd = 0, then A is invertible. c d 9. If A is invertible, so is A−1. 10. If the equation Ax = b is consistent for every b 2 Rn, then the columns of A are linearly independent. 11. If the equation Ax = b is consistent for every b 2 Rn, then the columns of A span Rn. 12. If A is invertible, so is AT , and (AT )−1 = (A−1)T . 13. If Ax = 0 has more than one solution, then A is invertible. 14. If there exists x 2 Rn such that Ax = b for some b 2 Rn, then A is invertible. 15. If Ax1 = Ax2 only when x1 = x2, then A is invertible. Solution to the T/F problems: 1. True 4. True 7. True 10. True 13. False 2. True 5. True 8. False 11. True 14. False 3. True 6. False 9. True 12. True 15. True.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us