
<p>INJECTIVE MODULES: <br>PREPARATORY MATERIAL FOR THE SNOWBIRD SUMMER SCHOOL ON COMMUTATIVE ALGEBRA </p><p>These notes are intended to give the reader an idea what injective modules are, where they show up, and, to a small extent, what one can do with them. Let R be a commutative Noetherian ring with an identity element. An R- module E is injective if Hom<sub style="top: 0.1408em;">R</sub>(−, E) is an exact functor. The main messages of these notes are </p><p>• Every R-module M has an injective hull or injective envelope, de- </p><p>noted by E<sub style="top: 0.1408em;">R</sub>(M), which is an injective module containing M, and has the property that any injective module containing M contains an isomorphic copy of E<sub style="top: 0.1407em;">R</sub>(M). <br>• A nonzero injective module is indecomposable if it is not the direct sum of nonzero injective modules. Every injective R-module is a direct sum of indecomposable injective R-modules. <br>• Indecomposable injective R-modules are in bijective correspondence with the prime ideals of R; in fact every indecomposable injective R-module is isomorphic to an injective hull E<sub style="top: 0.1407em;">R</sub>(R/p), for some prime ideal p of R. <br>• The number of isomorphic copies of E<sub style="top: 0.1407em;">R</sub>(R/p) occurring in any direct sum decomposition of a given injective module into indecomposable injectives is independent of the decomposition. <br>• Let (R, m) be a complete local ring and E = E<sub style="top: 0.1407em;">R</sub>(R/m) be the injective hull of the residue field of R. The functor (−)<sup style="top: -0.3299em;">∨ </sup>= Hom<sub style="top: 0.1407em;">R</sub>(−, E) has the following properties, known as Matlis duality: <br>(1) If M is an R-module which is Noetherian or Artinian, then </p><p>M<sup style="top: -0.3299em;">∨∨ </sup>M. </p><p>∼</p><p>=<br>(2) If M is Noetherian, then M<sup style="top: -0.3299em;">∨ </sup>is Artinian. (3) If M is Artinian, then M<sup style="top: -0.3299em;">∨ </sup>is Noetherian. </p><p>Any unexplained terminology or notation can be found in [1] or [3]. <br>Matlis’ theory of injective modules was developed in the paper [4], and may also be found in [3, § 18] and [2, § 3]. <br>These notes owe a great deal of intellectual debt to Mel Hochster, whose lecture notes are very popular with the organizers of this workshop. However, the organizers claim intellectual property of all errors here. </p><p>1. Injective Modules </p><p>Throughout, R is a commutative ring with an identity element 1 ∈ R. <br>All R-modules M are assumed to be unitary, i.e., 1 · m = m for all m ∈ M. </p><p>1</p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">INJECTIVE MODULES </li></ul><p></p><p>Definition 1.1. An R-module E is injective if for all R-module homomorphisms ϕ : M −→ N and ψ : M −→ E where ϕ is injective, there exists an R-linear homomorphism θ : N −→ E such that θ ◦ ϕ = ψ. </p><p>Exercise 1.2. Show that E is an injective R-module E if and only if Hom<sub style="top: 0.1407em;">R</sub>(−, E) is an exact functor, i.e., applying Hom<sub style="top: 0.1407em;">R</sub>(−, E) takes short exact sequences to short exact sequences. </p><p>Theorem 1.3 (Baer’s Criterion). An R-module E is injective if and only if every R-module homomorphism a −→ E, where a is an ideal, extends to a homomorphism R −→ E. </p><p>Proof. One direction is obvious. For the other, if M ⊆ N are R-modules and ϕ : M −→ E, we need to show that ϕ extends to a homomorphism N −→ E. By Zorn’s lemma, there is a module N<sup style="top: -0.3298em;">0 </sup>with M ⊆ N<sup style="top: -0.3298em;">0 </sup>⊆ N, which is maximal with respect to the property that ϕ extends to a homomorphism ϕ<sup style="top: -0.3299em;">0 </sup>: N<sup style="top: -0.3299em;">0 </sup>−→ E. If N<sup style="top: -0.3299em;">0 </sup>= N, take an element n ∈ N \N<sup style="top: -0.3299em;">0 </sup>and consider the ideal </p><p>ϕ<sup style="top: -0.2344em;">0 </sup></p><p>n</p><p>a = N<sup style="top: -0.3299em;">0 </sup>:<sub style="top: 0.1407em;">R </sub>n. By hypothesis, the composite homomorphism a −→ N<sup style="top: -0.3299em;">0 </sup>−→ E extends to a homomorphism ψ : R −→ E. Define ϕ<sup style="top: -0.3298em;">00 </sup>: N<sup style="top: -0.3298em;">0 </sup>+ Rn −→ E by ϕ<sup style="top: -0.3299em;">00</sup>(n<sup style="top: -0.3299em;">0 </sup>+ rn) = ϕ<sup style="top: -0.3299em;">0</sup>(n<sup style="top: -0.3299em;">0</sup>) + ψ(r). This contradicts the maximality of ϕ<sup style="top: -0.3299em;">0</sup>, so we must have N<sup style="top: -0.3299em;">0 </sup>= N. </p><p>ꢀ</p><p>Exercise 1.4. Let R be an integral domain. An R-module M is divisible if rM = M for every nonzero element r ∈ R. </p><p>(1) Prove that an injective R-module is divisible. (2) If R is a principal ideal domain, prove that an R-module is divisible if and only if it is injective. <br>(3) Conclude that Q/Z is an injective Z-module. (4) Prove that any nonzero Abelian group has a nonzero homomorphism to Q/Z. <br>(5) If (−)<sup style="top: -0.3298em;">∨ </sup>= Hom<sub style="top: 0.1444em;">Z</sub>(−, Q/Z) and M is any Z-module, prove that the natural map M −→ M<sup style="top: -0.3299em;">∨∨ </sup>is injective. </p><p>Exercise 1.5. Let R be an A-algebra. <br>(1) Use the adjointness of ⊗ and Hom to prove that if E is an injective <br>A-module, and F is a flat R-module, then Hom<sub style="top: 0.1407em;">A</sub>(F, E) is an injective R-module. <br>(2) Prove that every R-module can be embedded in an injective R- module. Hint: If M is the R-module, take a free R-module F with a surjection F −→→ Hom<sub style="top: 0.1444em;">Z</sub>(M, Q/Z). Apply (−)<sup style="top: -0.3299em;">∨ </sup>= Hom<sub style="top: 0.1444em;">Z</sub>(−, Q/Z). </p><p>Proposition 1.6. Let M = 0 and N be R-modules, and let θ : M ,→ N be a monomorphism. Then the following are equivalent: </p><p>(1) Every nonzero submodule of N has a nonzero intersection with θ(M). (2) Every nonzero element of N has a nonzero multiple in θ(M). (3) If ϕ ◦ θ is injective for a homomorphism ϕ : N −→ Q, then ϕ is injective. </p><p></p><ul style="display: flex;"><li style="flex:1">INJECTIVE MODULES </li><li style="flex:1">3</li></ul><p></p><p>Proof. (1) =⇒ (2) If n is a nonzero element of N, then the cyclic module Rn has a nonzero intersection with θ(M). <br>(2) =⇒ (3) If not, then ker ϕ has a nonzero intersection with θ(M), contradicting the assumption that ϕ ◦ θ is injective. <br>(3) =⇒ (1) Let N<sup style="top: -0.3299em;">0 </sup>be a nonzero submodule of N, and consider the canonical surjection ϕ : N −→ N/N<sup style="top: -0.3299em;">0</sup>. Then ϕ is not injective, hence the composition ϕ ◦ θ : M −→ N/N<sup style="top: -0.3299em;">0 </sup>is not injective, i.e., N<sup style="top: -0.3299em;">0 </sup>contains a nonzero element of θ(M). </p><p>ꢀ</p><p>Definition 1.7. If θ : M ,→ N satisfies the equivalent conditions of the previous proposition, we say that N is an essential extension of M. </p><p>Example 1.8. If R is a domain and Frac(R) is its field of fractions, then R ⊆ Frac(R) is an essential extension. More generally, if S ⊆ R is the set of nonzerodivisors in R, then S<sup style="top: -0.3299em;">−1</sup>R is an essential extension of R. </p><p>Example 1.9. Let (R, m) be a local ring and N be an R-module such that every element of N is killed by a power of m. The socle of N is the submodule soc(N) = 0 :<sub style="top: 0.1407em;">N </sub>m. Then soc(N) ⊆ N is an essential extension: if n ∈ N is a nonzero element, let t be the smallest integer such that m<sup style="top: -0.3299em;">t</sup>n = 0. Then m<sup style="top: -0.3299em;">t−1</sup>n ⊆ soc(N), and m<sup style="top: -0.3299em;">t−1</sup>n contains a nonzero multiple of n. </p><p>Exercise 1.10. Let I be an index set. Then M<sub style="top: 0.1363em;">i </sub>⊆ N<sub style="top: 0.1363em;">i </sub>is essential for all i ∈ I if and only if ⊕<sub style="top: 0.1407em;">i∈I</sub>M<sub style="top: 0.1364em;">i </sub>⊆ ⊕<sub style="top: 0.1407em;">i∈I</sub>N<sub style="top: 0.1364em;">i </sub>is essential. </p><p>Example 1.11. Let R = C[[x]] which is a local ring with maximal ideal (x), and take N = R<sub style="top: 0.1363em;">x</sub>/R. Every element of N is killed by a power of the maximal ideal, and soc(N) is the 1-dimensional C-vector space generated by [1/x], i.e., the image of 1/x in N. By Example 1.9, soc(N) ⊆ N is an essential </p><p></p><ul style="display: flex;"><li style="flex:1">Q</li><li style="flex:1">Q</li></ul><p></p><p>extension. However <sub style="top: 0.2688em;">N </sub>soc(N) ⊆ <sub style="top: 0.2688em;">N </sub>N is not an essential extension since the element </p><p>Y</p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>[1/x], [1/x<sup style="top: -0.3753em;">2</sup>], [1/x<sup style="top: -0.3753em;">3</sup>], . . . ∈ <br>N</p><p>N</p><p>Q</p><p>does not have a nonzero multiple in <sub style="top: 0.2687em;">N </sub>soc(N). (Prove!) </p><p>Proposition 1.12. Let L, M, N be nonzero R-modules. <br>(1) M ⊆ M is an essential extension. (2) Suppose L ⊆ M ⊆ N. Then L ⊆ N is an essential extension if and only if both L ⊆ M and M ⊆ N are essential extensions. <br>(3) Suppose M ⊆ N and M ⊆ N<sub style="top: 0.1364em;">i </sub>⊆ N with N = ∪<sub style="top: 0.1364em;">i</sub>N<sub style="top: 0.1364em;">i</sub>. Then M ⊆ N is an essential extension if and only if M ⊆ N<sub style="top: 0.1363em;">i </sub>is an essential extension for every i. <br>(4) Suppose M ⊆ N. Then there exists a module N<sup style="top: -0.3299em;">0 </sup>with M ⊆ N<sup style="top: -0.3299em;">0 </sup>⊆ N, which is maximal with respect to the property that M ⊆ N<sup style="top: -0.3299em;">0 </sup>is an essential extension. </p><p>Proof. The assertions (1), (2), and (3) elementary. For (4), let <br>F = {N<sup style="top: -0.3754em;">0 </sup>| M ⊆ N<sup style="top: -0.3754em;">0 </sup>⊆ N and N<sup style="top: -0.3754em;">0 </sup>is an essential extension of M}. </p><p></p><ul style="display: flex;"><li style="flex:1">4</li><li style="flex:1">INJECTIVE MODULES </li></ul><p></p><p>Then M ∈ F so F is nonempty. If N<sub style="top: 0.2436em;">1</sub><sup style="top: -0.3299em;">0 </sup>⊆ N<sub style="top: 0.2436em;">2</sub><sup style="top: -0.3299em;">0 </sup>⊆ N<sub style="top: 0.2436em;">3</sub><sup style="top: -0.3299em;">0 </sup>⊆ . . . is a chain in F, then ∪<sub style="top: 0.1364em;">i</sub>N<sub style="top: 0.2547em;">i</sub><sup style="top: -0.3298em;">0 </sup>∈ F is an upper bound. By Zorn’s Lemma, the set F has maximal elements. </p><p>ꢀ</p><p>Definition 1.13. The module N<sup style="top: -0.3299em;">0 </sup>in Proposition 1.12 (4) is a maximal essential extension of M in N. If M ⊆ N is essential and N has no proper essential extensions, we say that N is a maximal essential extension of M. </p><p>Proposition 1.14. Let M be an R-module. The following conditions are equivalent: <br>(1) M is injective; (2) M is a direct summand of every module containing it; (3) M has no proper essential extensions. </p><p>Proof. (1) =⇒ (2) =⇒ (3) is left as an exercise, and we prove the implication (3) =⇒ (2). Consider an embedding M ,→ E where E is injective. By Zorn’s lemma, there exists a submodule N ⊆ E which is maximal with respect to the property that N ∩ M = 0. This implies that M ,→ E/N is an essential extension, and hence that it is an isomorphism. But then E = M + N so E = M ⊕ N. Since M is a direct summand of an injective module, it must be injective. </p><p>ꢀ</p><p>Proposition 1.15. Let M and E be R-modules. <br>(1) If E is injective and M ⊆ E, then any maximal essential extension of M in E is an injective module, hence is a direct summand of E. <br>(2) Any two maximal essential extensions of M are isomorphic. </p><p>Proof. (1) Let E<sup style="top: -0.3299em;">0 </sup>be a maximal essential extension of M in E and let E<sup style="top: -0.3299em;">0 </sup>⊆ Q be an essential extension. Since E is injective, the identity map E<sup style="top: -0.3299em;">0 </sup>−→ E lifts to a homomorphism ϕ : Q −→ E. Since Q is an essential extension of E<sup style="top: -0.3299em;">0</sup>, it follows that ϕ must be injective. This gives us M ⊆ E<sup style="top: -0.3299em;">0 </sup>⊆ Q ,→ E, and the maximality of E<sup style="top: -0.3298em;">0 </sup>implies that Q = E<sup style="top: -0.3298em;">0</sup>. Hence E<sup style="top: -0.3298em;">0 </sup>has no proper essential extensions, and so it is an injective module by Proposition 1.14. <br>(2) Let M ⊆ E and M ⊆ E<sup style="top: -0.3299em;">0 </sup>be maximal essential extensions of M. Then <br>E<sup style="top: -0.3298em;">0 </sup>is injective, so M ⊆ E<sup style="top: -0.3298em;">0 </sup>extends to a homomorphism ϕ : E −→ E<sup style="top: -0.3298em;">0</sup>. The inclusion M ⊆ E is an essential extension, so ϕ is injective. But then ϕ(E) is an injective module, and hence a direct summand of E<sup style="top: -0.3299em;">0</sup>. Since M ⊆ ϕ(E) ⊆ E<sup style="top: -0.3299em;">0 </sup>is an essential extension, we must have ϕ(E) = E<sup style="top: -0.3299em;">0</sup>. </p><p>ꢀ</p><p>Definition 1.16. The injective hull or injective envelope of an R-module </p><p>M is a maximal essential extension of M, and is denoted by E<sub style="top: 0.1407em;">R</sub>(M). </p><p>Definition 1.17. Let M be an R-module. A minimal injective resolution </p><p>of M is a complex </p><p>0 −→ E<sup style="top: -0.3754em;">0 </sup>−→ E<sup style="top: -0.3754em;">1 </sup>−→ E<sup style="top: -0.3754em;">2 </sup>−→ . . . </p><p>such that E<sup style="top: -0.3299em;">0 </sup>= E<sub style="top: 0.1407em;">R</sub>(M), E<sup style="top: -0.3299em;">1 </sup>= E<sub style="top: 0.1407em;">R</sub>(E<sup style="top: -0.3299em;">0</sup>/M), and <br>E<sup style="top: -0.3754em;">i+1 </sup>= E<sub style="top: 0.1407em;">R</sub>(E<sup style="top: -0.3754em;">i</sup>/ image(E<sup style="top: -0.3754em;">i−1</sup>)) for all i ≥ 2. </p><p></p><ul style="display: flex;"><li style="flex:1">INJECTIVE MODULES </li><li style="flex:1">5</li></ul><p></p><p>Note that the modules E<sup style="top: -0.3299em;">i </sup>are injective, and that image(E<sup style="top: -0.3299em;">i</sup>) ⊆ E<sup style="top: -0.3299em;">i+1 </sup>is an essential extension for all i ≥ 0. </p><p>2. Injectives over a Noetherian Ring </p><p>Proposition 2.1 (Bass). A ring R is Noetherian if and only if every direct sum of injective R-modules is injective. </p><p>Proof. We first show that if M is a finitely generated R-module, then </p><p>∼</p><p>Hom (M, ⊕ N ) ⊕ Hom (M, N ). <br>=</p><p></p><ul style="display: flex;"><li style="flex:1">R</li><li style="flex:1">i</li><li style="flex:1">i</li><li style="flex:1">i</li><li style="flex:1">R</li><li style="flex:1">i</li></ul><p></p><p>Independent of the finite generation of M, there is a natural injective homomorphism ϕ : ⊕<sub style="top: 0.1364em;">i </sub>Hom<sub style="top: 0.1408em;">R</sub>(M, N<sub style="top: 0.1364em;">i</sub>) −→ Hom<sub style="top: 0.1408em;">R</sub>(M, ⊕<sub style="top: 0.1364em;">i</sub>N<sub style="top: 0.1364em;">i</sub>). If M is finitely generated, the image of a homomorphism from M to ⊕<sub style="top: 0.1363em;">i</sub>N<sub style="top: 0.1363em;">i </sub>is contained in the direct sum of finitely many N<sub style="top: 0.1363em;">i</sub>. Since Hom commutes with forming finite direct sums, ϕ is surjective as well. <br>Let R be a Noetherian ring, and E<sub style="top: 0.1363em;">i </sub>be injective R-modules. Then for an ideal a of R, the natural map Hom<sub style="top: 0.1407em;">R</sub>(R, E<sub style="top: 0.1364em;">i</sub>) −→ Hom<sub style="top: 0.1407em;">R</sub>(a, E<sub style="top: 0.1364em;">i</sub>) is surjective. Since a is finitely generated, the above isomorphism implies that Hom<sub style="top: 0.1407em;">R</sub>(R, ⊕E<sub style="top: 0.1363em;">i</sub>) −→ Hom<sub style="top: 0.1407em;">R</sub>(a, ⊕E<sub style="top: 0.1363em;">i</sub>) is surjective as well. Baer’s criterion now implies that ⊕E<sub style="top: 0.1364em;">i </sub>is injective. <br>If R is not Noetherian, it contains a strictly ascending chain of ideals </p><p>a<sub style="top: 0.1363em;">1 </sub>( a<sub style="top: 0.1363em;">2 </sub>( a<sub style="top: 0.1363em;">3 </sub>( . . . . </p><p>Let a = ∪<sub style="top: 0.1363em;">i</sub>a<sub style="top: 0.1363em;">i</sub>. The natural maps a ,→ R −→→ R/a<sub style="top: 0.1363em;">i </sub>,→ E<sub style="top: 0.1407em;">R</sub>(R/a<sub style="top: 0.1363em;">i</sub>) give us </p><p>Q</p><p>a homomorphism a −→ <sub style="top: 0.2688em;">i </sub>E<sub style="top: 0.1407em;">R</sub>(R/a<sub style="top: 0.1363em;">i</sub>). The image lies in the submodule ⊕<sub style="top: 0.1364em;">i</sub>E<sub style="top: 0.1407em;">R</sub>(R/a<sub style="top: 0.1364em;">i</sub>), (check!) so we have a homomorphism ϕ : a −→ ⊕ E<sub style="top: 0.1407em;">R</sub>(R/a<sub style="top: 0.1364em;">i</sub>). Lastly, check that ϕ does not extend to homomorphism R −→ ⊕<sup style="top: -0.9429em;">i</sup><sub style="top: 0.1363em;">i</sub>E<sub style="top: 0.1407em;">R</sub>(R/a<sub style="top: 0.1363em;">i</sub>). </p><p>ꢀ</p><p>Theorem 2.2. Let E be an injective module over a Noetherian ring R. Then </p><p>∼</p><p>E<br>⊕ E (R/p ), </p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1">i</li><li style="flex:1">R</li><li style="flex:1">i</li></ul><p></p><p>where p<sub style="top: 0.1364em;">i </sub>are prime ideals of R. Moreover, any such direct sum is an injective R-module. </p><p>Proof. The last statement follows from Proposition 2.1. Let E be an injective R-module. By Zorn’s Lemma, there exists a maximal family {E<sub style="top: 0.1364em;">i</sub>} of injective </p><p>∼</p><p>submodules of E such that E<sub style="top: 0.1363em;">i </sub>E (R/p ), and their sum in E is a direct <br>=</p><p></p><ul style="display: flex;"><li style="flex:1">R</li><li style="flex:1">i</li></ul><p></p><p>sum. Let E<sup style="top: -0.3299em;">0 </sup>= ⊕E<sub style="top: 0.1363em;">i</sub>, which is an injective module, and hence is a direct summand of E. There exists an R-module E<sup style="top: -0.3299em;">00 </sup>such that E = E<sup style="top: -0.3299em;">0 </sup>⊕ E<sup style="top: -0.3299em;">00</sup>. If E<sup style="top: -0.3299em;">00 </sup>= 0, pick a nonzero element x ∈ E<sup style="top: -0.3299em;">00</sup>. Let p be an associated prime of Rx. Then R/p ,→ Rx ⊆ E<sup style="top: -0.3298em;">00</sup>, so there is a copy of E<sub style="top: 0.1408em;">R</sub>(R/p) contained in E<sup style="top: -0.3298em;">00 </sup>and E<sup style="top: -0.3299em;">00 </sup>= E<sub style="top: 0.1407em;">R</sub>(R/p) ⊕ E<sup style="top: -0.3299em;">000</sup>, contradicting the maximality of family {E<sub style="top: 0.1363em;">i</sub>}. </p><p>ꢀ</p><p>Definition 2.3. Let a be an ideal of a ring R, and M be an R-module. We say M is a-torsion if every element of M is killed by some power of a. </p><p></p><ul style="display: flex;"><li style="flex:1">6</li><li style="flex:1">INJECTIVE MODULES </li></ul><p></p><p>Theorem 2.4. Let p be a prime ideal of a Noetherian ring R, and let E = E<sub style="top: 0.1407em;">R</sub>(R/p) and κ = R<sub style="top: 0.1363em;">p</sub>/pR<sub style="top: 0.1363em;">p</sub>, which is the fraction field of R/p. Then </p><p>x</p><p>(1) if x ∈ R \ p, then E −→ E is an isomorphism, and so E = E<sub style="top: 0.1363em;">p</sub>; (2) 0 :<sub style="top: 0.1408em;">E </sub>p = κ; (3) κ ⊆ E is an essential extension of R<sub style="top: 0.1364em;">p</sub>-modules and E = E<sub style="top: 0.1408em;">R </sub>(κ); </p><p>p</p><p>(4) E is p-torsion and Ass(E) = {p}; </p><p>(5) Hom<sub style="top: 0.1407em;">R </sub>(κ, E) = κ and Hom<sub style="top: 0.1407em;">R </sub>(κ, E<sub style="top: 0.1407em;">R</sub>(R/q)<sub style="top: 0.1363em;">p</sub>) = 0 for primes q = p. </p><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><p>Proof. (1) κ is an essential extension of R/p by Example 1.8, so E contains a copy of κ and we may assume R/p ⊆ κ ⊆ E. Multiplication by x ∈ R\p is injective on κ, and hence also on its essential extension E. The submodule xE is injective, so it is a direct summand of E. But κ ⊆ xE ⊆ E are essential extensions, so xE = E. <br>(2) 0 :<sub style="top: 0.1407em;">E </sub>p = 0 :<sub style="top: 0.1407em;">E </sub>pR<sub style="top: 0.1364em;">p </sub>is a vector space over the field κ, and hence the inclusion κ ⊆ 0 :<sub style="top: 0.1407em;">E </sub>p splits. But κ ⊆ 0 :<sub style="top: 0.1407em;">E </sub>p ⊆ E is an essential extension, so 0 :<sub style="top: 0.1408em;">E </sub>p = κ. <br>(3) The containment κ ⊆ E is an essential extension of R-modules, hence also of R<sub style="top: 0.1363em;">p</sub>-modules. Suppose E ⊆ M is an essential extension of R<sub style="top: 0.1363em;">p</sub>-modules, pick m ∈ M. Then m has a nonzero multiple (r/s)m ∈ E, where s ∈ R \ p. But then rm is a nonzero multiple of m in E, so E ⊆ M is an essential extension of R-modules, and therefore M = E. <br>(4) Let q ∈ Ass(E). Then there exists x ∈ E such that Rx ⊆ E and <br>0 :<sub style="top: 0.1407em;">R </sub>x = q. Since R/p ⊆ E is essential, x has a nonzero multiple y in R/p. But then the annihilator of y is p, so q = p and Ass(E) = {p}. <br>If a is the annihilator of a nonzero element of E, then p is the only associated prime of R/a ,→ E, so E is p-torsion. <br>(5) For the first assertion, </p><p>∼</p><p>Hom<sub style="top: 0.1407em;">R </sub>(κ, E) = Hom<sub style="top: 0.1407em;">R </sub>(R /pR , E) 0 : </p><p>E = κ. </p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><p>pR<sub style="top: 0.083em;">p </sub></p><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><p>Since elements of R\q act invertibly on E<sub style="top: 0.1408em;">R</sub>(R/q), we see that E<sub style="top: 0.1408em;">R</sub>(R/q)<sub style="top: 0.1363em;">p </sub>= 0 if q * p. In the case q ⊆ p, we have </p><p>∼</p><p></p><ul style="display: flex;"><li style="flex:1">Hom<sub style="top: 0.1407em;">R </sub>(κ, E (R/q) ) 0 : </li><li style="flex:1">E<sub style="top: 0.1407em;">R</sub>(R/q)<sub style="top: 0.1364em;">p </sub>= 0 :<sub style="top: 0.1407em;">pR </sub>E<sub style="top: 0.1407em;">R</sub>(R/q). </li></ul><p>=</p><p>R</p><p>p</p><p>pR<sub style="top: 0.083em;">p </sub></p><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><p>If this is nonzero, then there is a nonzero element of E<sub style="top: 0.1407em;">R</sub>(R/q) killed by p, which forces q = p since Ass E<sub style="top: 0.1408em;">R</sub>(R/q) = {q}. </p><p>ꢀ</p><p>We are now able to strengthen Theorem 2.2 to obtain the following structure theorem for injective modules over Noetherian rings. </p><p>Theorem 2.5. Let E be an injective over a Noetherian ring R. Then </p><p>M</p><p></p><ul style="display: flex;"><li style="flex:1">E = </li><li style="flex:1">E<sub style="top: 0.1407em;">R</sub>(R/p)<sup style="top: -0.3754em;">α</sup><sup style="top: 0.0831em;">p </sup>, </li></ul><p></p><p>p∈Spec R </p><p>and the numbers α<sub style="top: 0.1364em;">p </sub>are independent of the direct sum decomposition. </p><p></p><ul style="display: flex;"><li style="flex:1">INJECTIVE MODULES </li><li style="flex:1">7</li></ul><p></p><p>Proof. Theorem 2.2 implies that a direct sum decomposition exists. By Theorem 2.4 (5), α<sub style="top: 0.1363em;">p </sub>is the dimension of the R<sub style="top: 0.1363em;">p</sub>/pR<sub style="top: 0.1363em;">p</sub>-vector space </p><p>Hom<sub style="top: 0.1407em;">R </sub>(R<sub style="top: 0.1363em;">p</sub>/pR<sub style="top: 0.1363em;">p</sub>, E<sub style="top: 0.1363em;">p</sub>), </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages12 Page
-
File Size-