Injective Modules: Preparatory Material for the Snowbird Summer School on Commutative Algebra

Injective Modules: Preparatory Material for the Snowbird Summer School on Commutative Algebra

<p>INJECTIVE MODULES: <br>PREPARATORY MATERIAL FOR THE SNOWBIRD SUMMER SCHOOL ON COMMUTATIVE ALGEBRA </p><p>These notes are intended to give the reader an idea what injective modules are, where they show up, and, to a small extent, what one can do with them. Let R be a commutative Noetherian ring with an identity element.&nbsp;An R- module E is injective if Hom<sub style="top: 0.1408em;">R</sub>(−, E) is an exact functor.&nbsp;The main messages of these notes are </p><p>• Every R-module M has an injective hull or injective envelope, de- </p><p>noted by E<sub style="top: 0.1408em;">R</sub>(M), which is an injective module containing M, and has the property that any injective module containing M contains an isomorphic copy of E<sub style="top: 0.1407em;">R</sub>(M). <br>• A nonzero injective module is indecomposable if it is not the direct sum of nonzero injective modules.&nbsp;Every injective R-module is a direct sum of indecomposable injective R-modules. <br>• Indecomposable injective R-modules are in bijective correspondence with the prime ideals of R; in fact every indecomposable injective R-module is isomorphic to an injective hull E<sub style="top: 0.1407em;">R</sub>(R/p), for some prime ideal p of R. <br>• The number of isomorphic copies of E<sub style="top: 0.1407em;">R</sub>(R/p) occurring in any direct sum decomposition of a given injective module into indecomposable injectives is independent of the decomposition. <br>• Let (R, m) be a complete local ring and E = E<sub style="top: 0.1407em;">R</sub>(R/m) be the injective hull of the residue field of R. The functor (−)<sup style="top: -0.3299em;">∨ </sup>= Hom<sub style="top: 0.1407em;">R</sub>(−, E) has the following properties, known as Matlis duality: <br>(1) If M is an R-module which is Noetherian or Artinian, then </p><p>M<sup style="top: -0.3299em;">∨∨ </sup>M. </p><p>∼</p><p>=<br>(2) If M is Noetherian, then M<sup style="top: -0.3299em;">∨ </sup>is Artinian. (3) If M is Artinian, then M<sup style="top: -0.3299em;">∨ </sup>is Noetherian. </p><p>Any unexplained terminology or notation can be found in [1] or [3]. <br>Matlis’ theory of injective modules was developed in the paper [4], and may also be found in [3, § 18] and [2, § 3]. <br>These notes owe a great deal of intellectual debt to Mel Hochster, whose lecture notes are very popular with the organizers of this workshop.&nbsp;However, the organizers claim intellectual property of all errors here. </p><p>1. Injective Modules </p><p>Throughout, R is a commutative ring with an identity element 1 ∈ R. <br>All R-modules M are assumed to be unitary, i.e., 1 · m = m for all m ∈ M. </p><p>1</p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">INJECTIVE MODULES </li></ul><p></p><p>Definition 1.1. An R-module E is injective if for all R-module homomorphisms ϕ : M −→ N and ψ : M −→ E where ϕ is injective, there exists an R-linear homomorphism θ : N −→ E such that θ ◦ ϕ = ψ. </p><p>Exercise 1.2. Show that E is an injective R-module E if and only if Hom<sub style="top: 0.1407em;">R</sub>(−, E) is an exact functor, i.e., applying Hom<sub style="top: 0.1407em;">R</sub>(−, E) takes short exact sequences to short exact sequences. </p><p>Theorem 1.3 (Baer’s Criterion). An R-module E is injective if and only if every R-module homomorphism a −→ E, where a is an ideal, extends to a homomorphism R −→ E. </p><p>Proof. One direction is obvious.&nbsp;For the other, if M ⊆ N are R-modules and ϕ : M −→ E, we need to show that ϕ extends to a homomorphism N −→ E. By Zorn’s lemma, there is a module N<sup style="top: -0.3298em;">0 </sup>with M ⊆ N<sup style="top: -0.3298em;">0 </sup>⊆ N, which is maximal with respect to the property that ϕ extends to a homomorphism ϕ<sup style="top: -0.3299em;">0 </sup>: N<sup style="top: -0.3299em;">0 </sup>−→ E. If&nbsp;N<sup style="top: -0.3299em;">0 </sup>= N, take an element n ∈ N \N<sup style="top: -0.3299em;">0 </sup>and consider the ideal </p><p>ϕ<sup style="top: -0.2344em;">0 </sup></p><p>n</p><p>a = N<sup style="top: -0.3299em;">0 </sup>:<sub style="top: 0.1407em;">R </sub>n. By hypothesis, the composite homomorphism a −→ N<sup style="top: -0.3299em;">0 </sup>−→ E extends to a homomorphism ψ : R −→ E. Define&nbsp;ϕ<sup style="top: -0.3298em;">00 </sup>: N<sup style="top: -0.3298em;">0 </sup>+ Rn −→ E by ϕ<sup style="top: -0.3299em;">00</sup>(n<sup style="top: -0.3299em;">0 </sup>+ rn) = ϕ<sup style="top: -0.3299em;">0</sup>(n<sup style="top: -0.3299em;">0</sup>) + ψ(r). This&nbsp;contradicts the maximality of ϕ<sup style="top: -0.3299em;">0</sup>, so we must have N<sup style="top: -0.3299em;">0 </sup>= N. </p><p>ꢀ</p><p>Exercise 1.4. Let R be an integral domain. An R-module M is divisible if rM = M for every nonzero element r ∈ R. </p><p>(1) Prove that an injective R-module is divisible. (2) If R is a principal ideal domain, prove that an R-module is divisible if and only if it is injective. <br>(3) Conclude that Q/Z is an injective Z-module. (4) Prove&nbsp;that any nonzero Abelian group has a nonzero homomorphism to Q/Z. <br>(5) If (−)<sup style="top: -0.3298em;">∨ </sup>= Hom<sub style="top: 0.1444em;">Z</sub>(−, Q/Z) and M is any Z-module, prove that the natural map M −→ M<sup style="top: -0.3299em;">∨∨ </sup>is injective. </p><p>Exercise 1.5. Let R be an A-algebra. <br>(1) Use the adjointness of ⊗ and Hom to prove that if E is an injective <br>A-module, and F is a flat R-module, then Hom<sub style="top: 0.1407em;">A</sub>(F, E) is an injective R-module. <br>(2) Prove that every R-module can be embedded in an injective R- module. Hint: If M is the R-module, take a free R-module F with a surjection F −→→ Hom<sub style="top: 0.1444em;">Z</sub>(M, Q/Z). Apply (−)<sup style="top: -0.3299em;">∨ </sup>= Hom<sub style="top: 0.1444em;">Z</sub>(−, Q/Z). </p><p>Proposition 1.6. Let M = 0 and N be R-modules, and let θ : M ,→ N be a monomorphism. Then the following are equivalent: </p><p>(1) Every&nbsp;nonzero submodule of N has a nonzero intersection with θ(M). (2) Every nonzero element of N has a nonzero multiple in θ(M). (3) If ϕ ◦ θ is injective for a homomorphism ϕ : N −→ Q, then ϕ is injective. </p><p></p><ul style="display: flex;"><li style="flex:1">INJECTIVE MODULES </li><li style="flex:1">3</li></ul><p></p><p>Proof. (1) =⇒ (2) If n is a nonzero element of N, then the cyclic module Rn has a nonzero intersection with θ(M). <br>(2) =⇒ (3) If not, then ker&nbsp;ϕ has a nonzero intersection with θ(M), contradicting the assumption that ϕ ◦ θ is injective. <br>(3) =⇒ (1) Let N<sup style="top: -0.3299em;">0 </sup>be a nonzero submodule of N, and consider the canonical surjection ϕ : N −→ N/N<sup style="top: -0.3299em;">0</sup>. Then&nbsp;ϕ is not injective, hence the composition ϕ ◦ θ : M −→ N/N<sup style="top: -0.3299em;">0 </sup>is not injective, i.e., N<sup style="top: -0.3299em;">0 </sup>contains a nonzero element of θ(M). </p><p>ꢀ</p><p>Definition 1.7. If θ : M ,→ N satisfies the equivalent conditions of the previous proposition, we say that N is an essential extension of M. </p><p>Example 1.8. If R is a domain and Frac(R) is its field of fractions, then R ⊆ Frac(R) is an essential extension.&nbsp;More generally, if S ⊆ R is the set of nonzerodivisors in R, then S<sup style="top: -0.3299em;">−1</sup>R is an essential extension of R. </p><p>Example 1.9. Let (R, m) be a local ring and N be an R-module such that every element of N is killed by a power of m. The&nbsp;socle of N is the submodule soc(N) = 0 :<sub style="top: 0.1407em;">N </sub>m. Then soc(N) ⊆ N is an essential extension: if n ∈ N is a nonzero element, let t be the smallest integer such that m<sup style="top: -0.3299em;">t</sup>n = 0. Then m<sup style="top: -0.3299em;">t−1</sup>n ⊆ soc(N), and m<sup style="top: -0.3299em;">t−1</sup>n contains a nonzero multiple of n. </p><p>Exercise 1.10. Let I be an index set.&nbsp;Then M<sub style="top: 0.1363em;">i </sub>⊆ N<sub style="top: 0.1363em;">i </sub>is essential for all i ∈ I if and only if ⊕<sub style="top: 0.1407em;">i∈I</sub>M<sub style="top: 0.1364em;">i </sub>⊆ ⊕<sub style="top: 0.1407em;">i∈I</sub>N<sub style="top: 0.1364em;">i </sub>is essential. </p><p>Example 1.11. Let R = C[[x]] which is a local ring with maximal ideal (x), and take N = R<sub style="top: 0.1363em;">x</sub>/R. Every&nbsp;element of N is killed by a power of the maximal ideal, and soc(N) is the 1-dimensional C-vector space generated by [1/x], i.e., the image of 1/x in N. By&nbsp;Example 1.9, soc(N) ⊆ N is an essential </p><p></p><ul style="display: flex;"><li style="flex:1">Q</li><li style="flex:1">Q</li></ul><p></p><p>extension. However&nbsp;<sub style="top: 0.2688em;">N </sub>soc(N) ⊆ <sub style="top: 0.2688em;">N </sub>N is not an essential extension since the element </p><p>Y</p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>[1/x], [1/x<sup style="top: -0.3753em;">2</sup>], [1/x<sup style="top: -0.3753em;">3</sup>], . . .&nbsp;∈ <br>N</p><p>N</p><p>Q</p><p>does not have a nonzero multiple in&nbsp;<sub style="top: 0.2687em;">N </sub>soc(N). (Prove!) </p><p>Proposition 1.12. Let L, M, N&nbsp;be nonzero R-modules. <br>(1) M ⊆ M is an essential extension. (2) Suppose L ⊆ M ⊆ N. Then L ⊆ N is an essential extension if and only if both L ⊆ M and M ⊆ N are essential extensions. <br>(3) Suppose M ⊆ N and M ⊆ N<sub style="top: 0.1364em;">i </sub>⊆ N with N = ∪<sub style="top: 0.1364em;">i</sub>N<sub style="top: 0.1364em;">i</sub>. Then M ⊆ N is an essential extension if and only if M ⊆ N<sub style="top: 0.1363em;">i </sub>is an essential extension for every i. <br>(4) Suppose M ⊆ N. Then there exists a module N<sup style="top: -0.3299em;">0 </sup>with M ⊆ N<sup style="top: -0.3299em;">0 </sup>⊆ N, which is maximal with respect to the property that M ⊆ N<sup style="top: -0.3299em;">0 </sup>is an essential extension. </p><p>Proof. The assertions (1), (2), and (3) elementary. For (4), let <br>F = {N<sup style="top: -0.3754em;">0 </sup>| M ⊆ N<sup style="top: -0.3754em;">0 </sup>⊆ N and N<sup style="top: -0.3754em;">0 </sup>is an essential extension of M}. </p><p></p><ul style="display: flex;"><li style="flex:1">4</li><li style="flex:1">INJECTIVE MODULES </li></ul><p></p><p>Then M ∈ F so F is nonempty.&nbsp;If N<sub style="top: 0.2436em;">1</sub><sup style="top: -0.3299em;">0 </sup>⊆ N<sub style="top: 0.2436em;">2</sub><sup style="top: -0.3299em;">0 </sup>⊆ N<sub style="top: 0.2436em;">3</sub><sup style="top: -0.3299em;">0 </sup>⊆ . . .&nbsp;is a chain in F, then ∪<sub style="top: 0.1364em;">i</sub>N<sub style="top: 0.2547em;">i</sub><sup style="top: -0.3298em;">0 </sup>∈ F is an upper bound.&nbsp;By Zorn’s Lemma, the set F has maximal elements. </p><p>ꢀ</p><p>Definition 1.13. The module N<sup style="top: -0.3299em;">0 </sup>in Proposition 1.12 (4) is a maximal essential extension of M in N. If&nbsp;M ⊆ N is essential and N has no proper essential extensions, we say that N is a maximal essential extension of M. </p><p>Proposition 1.14. Let M be an R-module. The&nbsp;following conditions are equivalent: <br>(1) M is injective; (2) M is a direct summand of every module containing it; (3) M has no proper essential extensions. </p><p>Proof. (1) =⇒ (2) =⇒ (3) is left as an exercise, and we prove the implication (3)&nbsp;=⇒ (2). Consider&nbsp;an embedding M ,→ E where E is injective. By&nbsp;Zorn’s lemma, there exists a submodule N ⊆ E which is maximal with respect to the property that N ∩ M = 0.&nbsp;This implies that M ,→ E/N is an essential extension, and hence that it is an isomorphism. But then E = M + N so E = M ⊕ N. Since M is a direct summand of an injective module, it must be injective. </p><p>ꢀ</p><p>Proposition 1.15. Let M and E be R-modules. <br>(1) If E is injective and M ⊆ E, then any maximal essential extension of M in E is an injective module, hence is a direct summand of E. <br>(2) Any two maximal essential extensions of M are isomorphic. </p><p>Proof. (1) Let E<sup style="top: -0.3299em;">0 </sup>be a maximal essential extension of M in E and let E<sup style="top: -0.3299em;">0 </sup>⊆ Q be an essential extension.&nbsp;Since E is injective, the identity map E<sup style="top: -0.3299em;">0 </sup>−→ E lifts to a homomorphism ϕ : Q −→ E. Since&nbsp;Q is an essential extension of E<sup style="top: -0.3299em;">0</sup>, it follows that ϕ must be injective.&nbsp;This gives us M ⊆ E<sup style="top: -0.3299em;">0 </sup>⊆ Q ,→ E, and the maximality of E<sup style="top: -0.3298em;">0 </sup>implies that Q = E<sup style="top: -0.3298em;">0</sup>. Hence&nbsp;E<sup style="top: -0.3298em;">0 </sup>has no proper essential extensions, and so it is an injective module by Proposition 1.14. <br>(2) Let M ⊆ E and M ⊆ E<sup style="top: -0.3299em;">0 </sup>be maximal essential extensions of M. Then <br>E<sup style="top: -0.3298em;">0 </sup>is injective, so M ⊆ E<sup style="top: -0.3298em;">0 </sup>extends to a homomorphism ϕ : E −→ E<sup style="top: -0.3298em;">0</sup>. The inclusion M ⊆ E is an essential extension, so ϕ is injective.&nbsp;But then ϕ(E) is an injective module, and hence a direct summand of E<sup style="top: -0.3299em;">0</sup>. Since M ⊆ ϕ(E) ⊆ E<sup style="top: -0.3299em;">0 </sup>is an essential extension, we must have ϕ(E) = E<sup style="top: -0.3299em;">0</sup>. </p><p>ꢀ</p><p>Definition 1.16. The injective hull or injective envelope of an R-module </p><p>M is a maximal essential extension of M, and is denoted by E<sub style="top: 0.1407em;">R</sub>(M). </p><p>Definition 1.17. Let M be an R-module. A&nbsp;minimal injective resolution </p><p>of M is a complex </p><p>0 −→ E<sup style="top: -0.3754em;">0 </sup>−→ E<sup style="top: -0.3754em;">1 </sup>−→ E<sup style="top: -0.3754em;">2 </sup>−→ . . . </p><p>such that E<sup style="top: -0.3299em;">0 </sup>= E<sub style="top: 0.1407em;">R</sub>(M), E<sup style="top: -0.3299em;">1 </sup>= E<sub style="top: 0.1407em;">R</sub>(E<sup style="top: -0.3299em;">0</sup>/M), and <br>E<sup style="top: -0.3754em;">i+1 </sup>= E<sub style="top: 0.1407em;">R</sub>(E<sup style="top: -0.3754em;">i</sup>/ image(E<sup style="top: -0.3754em;">i−1</sup>)) for&nbsp;all i ≥ 2. </p><p></p><ul style="display: flex;"><li style="flex:1">INJECTIVE MODULES </li><li style="flex:1">5</li></ul><p></p><p>Note that the modules E<sup style="top: -0.3299em;">i </sup>are injective, and that image(E<sup style="top: -0.3299em;">i</sup>) ⊆ E<sup style="top: -0.3299em;">i+1 </sup>is an essential extension for all i ≥ 0. </p><p>2. Injectives over a Noetherian Ring </p><p>Proposition 2.1 (Bass). A ring R is Noetherian if and only if every direct sum of injective R-modules is injective. </p><p>Proof. We first show that if M is a finitely generated R-module, then </p><p>∼</p><p>Hom (M, ⊕ N ) ⊕ Hom (M, N ). <br>=</p><p></p><ul style="display: flex;"><li style="flex:1">R</li><li style="flex:1">i</li><li style="flex:1">i</li><li style="flex:1">i</li><li style="flex:1">R</li><li style="flex:1">i</li></ul><p></p><p>Independent of the finite generation of M, there is a natural injective homomorphism ϕ : ⊕<sub style="top: 0.1364em;">i </sub>Hom<sub style="top: 0.1408em;">R</sub>(M, N<sub style="top: 0.1364em;">i</sub>) −→ Hom<sub style="top: 0.1408em;">R</sub>(M, ⊕<sub style="top: 0.1364em;">i</sub>N<sub style="top: 0.1364em;">i</sub>). If&nbsp;M is finitely generated, the image of a homomorphism from M to ⊕<sub style="top: 0.1363em;">i</sub>N<sub style="top: 0.1363em;">i </sub>is contained in the direct sum of finitely many N<sub style="top: 0.1363em;">i</sub>. Since&nbsp;Hom commutes with forming finite direct sums, ϕ is surjective as well. <br>Let R be a Noetherian ring, and E<sub style="top: 0.1363em;">i </sub>be injective R-modules. Then&nbsp;for an ideal a of R, the natural map Hom<sub style="top: 0.1407em;">R</sub>(R, E<sub style="top: 0.1364em;">i</sub>) −→ Hom<sub style="top: 0.1407em;">R</sub>(a, E<sub style="top: 0.1364em;">i</sub>) is surjective. Since&nbsp;a is finitely generated, the above isomorphism implies that Hom<sub style="top: 0.1407em;">R</sub>(R, ⊕E<sub style="top: 0.1363em;">i</sub>) −→ Hom<sub style="top: 0.1407em;">R</sub>(a, ⊕E<sub style="top: 0.1363em;">i</sub>) is surjective as well.&nbsp;Baer’s criterion now implies that ⊕E<sub style="top: 0.1364em;">i </sub>is injective. <br>If R is not Noetherian, it contains a strictly ascending chain of ideals </p><p>a<sub style="top: 0.1363em;">1 </sub>( a<sub style="top: 0.1363em;">2 </sub>( a<sub style="top: 0.1363em;">3 </sub>( . . . . </p><p>Let a = ∪<sub style="top: 0.1363em;">i</sub>a<sub style="top: 0.1363em;">i</sub>. The&nbsp;natural maps a ,→ R −→→ R/a<sub style="top: 0.1363em;">i </sub>,→ E<sub style="top: 0.1407em;">R</sub>(R/a<sub style="top: 0.1363em;">i</sub>) give us </p><p>Q</p><p>a homomorphism a −→ <sub style="top: 0.2688em;">i </sub>E<sub style="top: 0.1407em;">R</sub>(R/a<sub style="top: 0.1363em;">i</sub>). The&nbsp;image lies in the submodule ⊕<sub style="top: 0.1364em;">i</sub>E<sub style="top: 0.1407em;">R</sub>(R/a<sub style="top: 0.1364em;">i</sub>), (check!)&nbsp;so we have a homomorphism ϕ : a −→ ⊕ E<sub style="top: 0.1407em;">R</sub>(R/a<sub style="top: 0.1364em;">i</sub>). Lastly, check that ϕ does not extend to homomorphism R −→ ⊕<sup style="top: -0.9429em;">i</sup><sub style="top: 0.1363em;">i</sub>E<sub style="top: 0.1407em;">R</sub>(R/a<sub style="top: 0.1363em;">i</sub>). </p><p>ꢀ</p><p>Theorem 2.2. Let E be an injective module over a Noetherian ring R. Then </p><p>∼</p><p>E<br>⊕ E (R/p ), </p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1">i</li><li style="flex:1">R</li><li style="flex:1">i</li></ul><p></p><p>where p<sub style="top: 0.1364em;">i </sub>are prime ideals of R. Moreover,&nbsp;any such direct sum is an injective R-module. </p><p>Proof. The last statement follows from Proposition 2.1.&nbsp;Let E be an injective R-module. By&nbsp;Zorn’s Lemma, there exists a maximal family {E<sub style="top: 0.1364em;">i</sub>} of injective </p><p>∼</p><p>submodules of E such that E<sub style="top: 0.1363em;">i </sub>E (R/p ), and their sum in E is a direct <br>=</p><p></p><ul style="display: flex;"><li style="flex:1">R</li><li style="flex:1">i</li></ul><p></p><p>sum. Let&nbsp;E<sup style="top: -0.3299em;">0 </sup>= ⊕E<sub style="top: 0.1363em;">i</sub>, which is an injective module, and hence is a direct summand of E. There&nbsp;exists an R-module E<sup style="top: -0.3299em;">00 </sup>such that E = E<sup style="top: -0.3299em;">0 </sup>⊕ E<sup style="top: -0.3299em;">00</sup>. If E<sup style="top: -0.3299em;">00 </sup>= 0, pick a nonzero element x ∈ E<sup style="top: -0.3299em;">00</sup>. Let&nbsp;p be an associated prime of Rx. Then R/p ,→ Rx ⊆ E<sup style="top: -0.3298em;">00</sup>, so there is a copy of E<sub style="top: 0.1408em;">R</sub>(R/p) contained in E<sup style="top: -0.3298em;">00 </sup>and E<sup style="top: -0.3299em;">00 </sup>= E<sub style="top: 0.1407em;">R</sub>(R/p) ⊕ E<sup style="top: -0.3299em;">000</sup>, contradicting the maximality of family {E<sub style="top: 0.1363em;">i</sub>}. </p><p>ꢀ</p><p>Definition 2.3. Let a be an ideal of a ring R, and M be an R-module. We say M is a-torsion if every element of M is killed by some power of a. </p><p></p><ul style="display: flex;"><li style="flex:1">6</li><li style="flex:1">INJECTIVE MODULES </li></ul><p></p><p>Theorem 2.4. Let p be a prime ideal of a Noetherian ring R, and let E = E<sub style="top: 0.1407em;">R</sub>(R/p) and κ = R<sub style="top: 0.1363em;">p</sub>/pR<sub style="top: 0.1363em;">p</sub>, which is the fraction field of R/p. Then </p><p>x</p><p>(1) if x ∈ R \ p, then E −→ E is an isomorphism, and so E = E<sub style="top: 0.1363em;">p</sub>; (2) 0 :<sub style="top: 0.1408em;">E </sub>p = κ; (3) κ ⊆ E is an essential extension of R<sub style="top: 0.1364em;">p</sub>-modules and E = E<sub style="top: 0.1408em;">R </sub>(κ); </p><p>p</p><p>(4) E is p-torsion and Ass(E) = {p}; </p><p>(5) Hom<sub style="top: 0.1407em;">R </sub>(κ, E) = κ and Hom<sub style="top: 0.1407em;">R </sub>(κ, E<sub style="top: 0.1407em;">R</sub>(R/q)<sub style="top: 0.1363em;">p</sub>) = 0 for primes q = p. </p><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><p>Proof. (1) κ is an essential extension of R/p by Example 1.8, so E contains a copy of κ and we may assume R/p ⊆ κ ⊆ E. Multiplication by x ∈ R\p is injective on κ, and hence also on its essential extension E. The submodule xE is injective, so it is a direct summand of E. But&nbsp;κ ⊆ xE ⊆ E are essential extensions, so xE = E. <br>(2) 0 :<sub style="top: 0.1407em;">E </sub>p = 0 :<sub style="top: 0.1407em;">E </sub>pR<sub style="top: 0.1364em;">p </sub>is a vector space over the field κ, and hence the inclusion κ ⊆ 0 :<sub style="top: 0.1407em;">E </sub>p splits. But κ ⊆ 0 :<sub style="top: 0.1407em;">E </sub>p ⊆ E is an essential extension, so 0 :<sub style="top: 0.1408em;">E </sub>p = κ. <br>(3) The containment κ ⊆ E is an essential extension of R-modules, hence also of R<sub style="top: 0.1363em;">p</sub>-modules. Suppose&nbsp;E ⊆ M is an essential extension of R<sub style="top: 0.1363em;">p</sub>-modules, pick m ∈ M. Then m has a nonzero multiple (r/s)m ∈ E, where s ∈ R \ p. But then rm is a nonzero multiple of m in E, so E ⊆ M is an essential extension of R-modules, and therefore M = E. <br>(4) Let q ∈ Ass(E). Then&nbsp;there exists x ∈ E such that Rx ⊆ E and <br>0 :<sub style="top: 0.1407em;">R </sub>x = q. Since R/p ⊆ E is essential, x has a nonzero multiple y in R/p. But then the annihilator of y is p, so q = p and Ass(E) = {p}. <br>If a is the annihilator of a nonzero element of E, then p is the only associated prime of R/a ,→ E, so E is p-torsion. <br>(5) For the first assertion, </p><p>∼</p><p>Hom<sub style="top: 0.1407em;">R </sub>(κ, E) = Hom<sub style="top: 0.1407em;">R </sub>(R /pR ,&nbsp;E) 0&nbsp;: </p><p>E = κ. </p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><p>pR<sub style="top: 0.083em;">p </sub></p><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><p>Since elements of R\q act invertibly on E<sub style="top: 0.1408em;">R</sub>(R/q), we see that E<sub style="top: 0.1408em;">R</sub>(R/q)<sub style="top: 0.1363em;">p </sub>= 0 if q * p. In the case q ⊆ p, we have </p><p>∼</p><p></p><ul style="display: flex;"><li style="flex:1">Hom<sub style="top: 0.1407em;">R </sub>(κ, E&nbsp;(R/q) )&nbsp;0 : </li><li style="flex:1">E<sub style="top: 0.1407em;">R</sub>(R/q)<sub style="top: 0.1364em;">p </sub>= 0 :<sub style="top: 0.1407em;">pR </sub>E<sub style="top: 0.1407em;">R</sub>(R/q). </li></ul><p>=</p><p>R</p><p>p</p><p>pR<sub style="top: 0.083em;">p </sub></p><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><p>If this is nonzero, then there is a nonzero element of E<sub style="top: 0.1407em;">R</sub>(R/q) killed by p, which forces q = p since Ass&nbsp;E<sub style="top: 0.1408em;">R</sub>(R/q) = {q}. </p><p>ꢀ</p><p>We are now able to strengthen Theorem 2.2 to obtain the following structure theorem for injective modules over Noetherian rings. </p><p>Theorem 2.5. Let E be an injective over a Noetherian ring R. Then </p><p>M</p><p></p><ul style="display: flex;"><li style="flex:1">E = </li><li style="flex:1">E<sub style="top: 0.1407em;">R</sub>(R/p)<sup style="top: -0.3754em;">α</sup><sup style="top: 0.0831em;">p </sup>, </li></ul><p></p><p>p∈Spec R </p><p>and the numbers α<sub style="top: 0.1364em;">p </sub>are independent of the direct sum decomposition. </p><p></p><ul style="display: flex;"><li style="flex:1">INJECTIVE MODULES </li><li style="flex:1">7</li></ul><p></p><p>Proof. Theorem 2.2 implies that a direct sum decomposition exists.&nbsp;By Theorem 2.4 (5), α<sub style="top: 0.1363em;">p </sub>is the dimension of the R<sub style="top: 0.1363em;">p</sub>/pR<sub style="top: 0.1363em;">p</sub>-vector space </p><p>Hom<sub style="top: 0.1407em;">R </sub>(R<sub style="top: 0.1363em;">p</sub>/pR<sub style="top: 0.1363em;">p</sub>, E<sub style="top: 0.1363em;">p</sub>), </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us