Advanced Technologies to Revitalize Nuclear Energy: Near-Term EM2 Fast Reactor Development

Advanced Technologies to Revitalize Nuclear Energy: Near-Term EM2 Fast Reactor Development

Advanced Technologies to Revitalize Nuclear Energy: Near-Term EM2 Fast Reactor Development By Dr. Ron S. Faibish Sr. Director of Business Development Nuclear Technologies and Materials General Atomics To Enabling Advanced Reactors for the Market Symposium Washington, DC March 8-9, 2018 1803-8416/ 1 GA’s Vision for Nuclear Technologies and Materials Transformational nuclear technology solutions for sustainable global growth Over 60 years of Core Capabilities EM2 1803-8416/ 2 Demonstration Unit is a Key Step Towards Realization of a 2 254 MWe Commercial EM Gas-Cooled Fast Reactor Two EM2 modules on High 53% efficiency - key to temperature economic performance seismically isolated platform Carbide fuel 30-years fuel life without engineered SiC reshuffling composite Inert helium Simplified BOP - reduced operating & security staff Novel core Ability to use variety of fuels configuration − Low enriched uranium − Converted MOX − Thorium − Depleted U or Nat. U − Spent LWR fuel Dry Proliferation resistant fuel reprocessing recycle 50 MWe EM2 Demonstration Reactor Design, Licensing, Construction & Technology Demonstration 1803-8416/ 3 EM2 design features optimized for a cost competitive nuclear plant Plant attributes to reduce cost 1. High temperature (850⁰C) è high efficiency (53%) Shaw: EM2 has 1/6th the nuclear concrete 2. Inert helium and direct drive high speed turbine- compared to AP1000 generator è fewer, smaller plant components 3. 30 year core life è maximum resource utilization; high capacity 4. High power density è smaller reactor footprint 5. Modular fabricationè shorter construction time 6. Free standing containment è reduced nuclear 2-unit module concrete 1803-8416/ 4 Financing Cost and Net Efficiency Have Largest Impact on Value of Nuclear Plant Investment Reduce risk premium Tornado Sensitivity Analysis For +/- 10% independent change in each variable: • Incremental grid additions • Short, certain schedule • Modular design/construction Cost of Capital • Regulatory reform Net Efficiency Increase net efficiency Capital Cost • High temperature (Nonfuel) • Better conversion cycle Operating Cost • Reduced hotel load Fuel Cost Reduce overnight cost • High reactor power density $56 $58 $60 $62 $64 $66 $68 $70 $72 • Reduce number of components Mean of LCOE • Modular fabrication 1803-8416/ 5 EM2 NOAK plant capital costs Capital Code of Accounts Costs Capitalized Capitalized Capitalized Capitalized preconstruction direct cost indirect cost owners cost cost Land & land Structures & Construction Project Mgt rights improvements services Reactor Regulatory Home office Site permits plant fees, taxes & engg services equipment insurance Power Field office Plant permits conversion engg Spare parts system services Electric plant Staff training Plant study equipment & startup Misc. plant Plant Plant report equipment simulator Heat G&A rejection Estimates include contractor and system integrator burdens and fee 1803-8416/ 6 30% lower overnight capital per MWe installed for 50% smaller sized EM2 plant 2 4-unit EM2 (1 GWe) 2-unit ALWR (2 GWe) 1060 MWe EM Overnight construction cost $4500/kWe $120 $100 $80 $60 2236 MWe ALWR 2016$ per MWhe 2016$ $40 Overnight construction cost $6700/kWe Levelized capital cost capital Levelized $20 $0 5% WACC 10% WACC Increased plant efficiency outweighs economy of scale 2-unit ALWR capital cost data source: EIA Annual Energy Outlook 2012 1803-8416/ 7 Engineered Materials Can Benefit Advanced Nuclear Concepts to Achieve High Performance and Cost-Savings Pressurized water SiC-SiC cladding Modular helium reactor reactor BWR Channel Box Molten salt reactor Fuels: • UC Gas-cooled fast • UN reactor • U3Si2 • UCO • UO2 (<1200oC) • THC 1803-8416/ 8 GA Advanced Solutions Are Applicable to Nuclear and Other Energy Technologies Technology & Approach Application High speed power conversion • Wind and solar / ceramic HX • H2 production from nuclear heat • EM2 demo reactor Engineered materials and • Liquid metal reactors advanced fuels • Molten reactors • Gas reactors • Light water reactors Fission product management • He, molten salt, sodium, liquid metal Walkaway passively-safe • He-Water-Air systems • Na-Water-Air • Cl/Fl-Water-Air Safety and Licensing • Advanced nuclear reactor licensing framework 1803-8416/ 9 Current Status of EM2 EM2 Conceptual Design: • Reactor physics, fuel performance and safety analyses have been conducted “The Energy Multiplier Module (EM2): Status of Conceptual Design,” Nuclear Technology 200, pp. 106-124 (2017) • Component design and analyses are under way EM2 Demonstration Reactor: • Preliminary investigation of candidate core concepts - Multi-zone core with a designated central zone for continuous irradiation • Proceeding with conceptual design 1803-8416/ 10 Demonstration Plant Top-Level Requirements/Goals 1. Produce electricity and be utility grid capable 2. Present a high fidelity representation of commercial plant fuel, reflector, primary system configuration, power conversion and safety features 3. Have a design lifetime of 30+ years (fuel qualification) 4. Demonstrate cost reduction features related to rapid construction and high power conversion efficiency 5. Provide ability to accelerate the fuel burnup and fast neutron exposure (dpa) to support long-burn feasibility 6. Support licensability under 10CFR Part 50 1803-8416/ 11 Advanced Technologies to Revitalize Nuclear Energy: Near-Term EM2 Fast Reactor Development Thank You! [email protected] This material is based upon work supported by General Atomics internal R&D funding. 1803-8416/ 12.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us