Isobutanol and Methanol Synthesis on Copper Catalysts Supported on Modified Magnesium Oxide

Isobutanol and Methanol Synthesis on Copper Catalysts Supported on Modified Magnesium Oxide

JOURNAL OF CATALYSIS 171, 130–147 (1997) ARTICLE NO. CA971777 Isobutanol and Methanol Synthesis on Copper Catalysts Supported on Modified Magnesium Oxide Mingting Xu, Marcelo J. L. Gines, Anne-Mette Hilmen, Brandy L. Stephens, and Enrique Iglesia1 Department of Chemical Engineering, University of California at Berkeley, Berkeley, California 94710 Received January 27, 1997; revised June 9, 1997; accepted June 10, 1997 for 2-methyl-1-propanol (isobutanol) because of its steric Alcohols are selectively produced from CO/H2 on K–CuMgCeOx hindrance and the lack of the two -hydrogens required catalysts, but synthesis rates are strongly inhibited by CO2 formed for aldol condensation reactions. Therefore, isobutanol be- during reaction. Reaction pathways involve methanol synthesis comes a preferred end product of alcohol chain growth re- on Cu, chain growth to C2+ alcohols, and metal–base bifunc- actions on basic oxides. Isobutanol synthesis appears to be tional coupling of alcohols to form isobutanol. Ethanol reactions limited by the rate of ethanol formation from synthesis gas – on K Cu0.5Mg5CeOx show that Cu catalyzes both alcohol dehydro- (4, 6), which limits the concentration of the aldehydic inter- genation and aldol condensation reactions. CeO increases Cu dis- 2 mediates required for chain growth. High reactor pressures persion and MgO surface area and K decreases Cu dispersion, but increases the density of basic sites. Reactions of acetaldehyde and favor the synthesis of higher alcohols and bimolecular con- 13C-labeled methanol lead to 1-13C-propionaldehyde, a precursor densation reactions during CO hydrogenation, but lead to to isobutanol. The density and strength of basic sites were mea- unfavorable thermodynamics for alcohol dehydrogenation 12 13 sured using a CO2/ CO2 isotopic jump method that probes the steps that may be required in order to form aldehyde inter- number and chemical properties of basic sites available at typical mediates required in aldol coupling pathways. isobutanol synthesis temperatures. K or CeO2 addition to CuMgOx Our study addresses the reaction pathways and catalytic increases the density and strength of basic sites and the rates of site requirements for the synthesis of branched alcohols base-catalyzed ethanol condensation reactions leading to acetone on (metal–base) bifunctional catalysts at low temperatures. and n-butyraldehyde. The presence of CO in the He carrier during These bifunctional catalysts consist of Cu metal crystallites temperature-programmed surface reactions of ethanol preadsorbed supported on high-surface-area basic oxides based on mod- on Cu Mg CeO decreases the rate of base-catalyzed condensation 0.5 5 x ified MgO. Specifically, we describe the synthesis proce- reactions of preadsorbed ethanol, possibly due to the poisoning of dures, catalyst structural characterization data, and surface basic and Cu sites by the CO2 formed from CO via water–gas shift reactions. c 1997 Academic Press and catalytic properties for a class of materials based on K-modified CuMgCeOx (6–8). These K–CuMgCeOx cata- lysts are among the best reported catalysts for alcohol synthesis at low temperatures and pressures (6–8). MgO- INTRODUCTION based solids also catalyze condensation reactions of al- cohols and aldehydes with high activity and selectivity Isobutanol is a potential fuel additive and a precursor (9, 10). to isobutene and methyl-tert-butyl ether. Currently avail- CuMgCeOx samples were prepared by controlled pH able catalysts for the synthesis of isobutanol from CO/H2 coprecipitation methods designed to maximize the num- mixtures require high temperatures (750–800 K) and pres- ber of Cu surface atoms and basic sites (8). Site titration sures (10–30 MPa) and produce isobutanol with relatively and isotopic switch methods were used to determine the low productivity and selectivity under milder reaction con- density and chemical properties of exposed Cu and ba- ditions (1–5). Typical isobutanol yields reported in the lit- sic sites. Isobutanol and linear alcohol synthesis pathways erature are shown in Table 1. were studied using the adsorption and surface reactions Isobutanol synthesis requires the initial formation of of alcohols and aldehydes in steady-state catalytic reac- methanol and higher linear alcohols and their subsequent tors and in a temperature-programmed surface reaction chain growth processes leading to 2-methyl-branched alco- (TPSR) apparatus. The role of individual elements in multi- hols with high selectivity (3). Chain growth rates are low component catalysts was explored by varying the composi- tion of K–CuMgCeOx catalysts and determining the effect 1 To whom correspondence should be addressed. E-mail: iglesia@ of each component on surface properties and on reaction cchem.berkeley.edu. Fax: (510) 642-4778. steps. 130 0021-9517/97 $25.00 Copyright c 1997 by Academic Press All rights of reproduction in any form reserved. ISOBUTANOL AND METHANOL SYNTHESIS 131 TABLE 1 low-Cu catalysts in order to get the same amount of CuO charge in the reactor. After the temperature was lowered to Representative Isobutanol Synthesis Catalysts (6, 7) 3 300K,a5%H2/He mixture (100 cm /min) was introduced GHSV Isobutanol into the reactor and the temperature was then increased 1 Catalyst T (K) P (MPa) CO/H2 (h ) yield (g/kgcat/h) to 623 K at a rate of 0.17 K/s. The evolution of H2O and the consumption of H2 during reduction were followed by Cu–Zn–Cr–Cs 583 9.1 1.0/0.45 5330 51 Cu–Mg–Ce–K 593 5.1 1.0/1.0 1832 7.2 on-line mass spectrometry (H200M Gas Analyzer, Leybold Pd–Zr–Zn–Mn–Li 593 5.1 1.0/1.0 1832 1.1 Inficon Inc.). Cu–Zn–Mn–K 643 10.0 0.5/1.0 10000 175a Zn–Cr–K 693 32.5 1.0/2.2 15000 125a Pd–Zr–Zn–Mn–Li 700 25.0 1.0/1.0 20000 740a Site Density and Reactivity a g/litercat/h. Cu surface areas were measured by titrating Cu sur- face atoms in prereduced samples with N2O (Matheson, ultra high purity) at 363 K. N2O was introduced as pulses EXPERIMENTAL METHODS (1.60 mol N2O/pulse) into a He stream. The number of chemisorbed O atoms was obtained from the amount of Catalyst Synthesis N2O consumed and the N2 produced. A saturation cover- age of 0.5 : 1 O : Cu was used to estimate Cu surface area CuMgCeO samples were prepared by coprecipitation s x and dispersion (13, 14). Cu dispersion is defined as the ratio of mixed nitrate solutions with an aqueous solution of of surface Cu (Cu ) to the total number of Cu atoms in the KOH (2 M) and K CO (1 M) at 338 K and a constant pH s 2 3 catalyst. of 9 in a well-stirred thermostated container. The solids In temperature-programmed CO desorption (TPD) formed were filtered, washed thoroughly with 300–500 cm3 2 measurements, samples (50 mg) were first pretreated in of deionized water at 333 K, and dried at 353 K overnight. flowing He (100 cm3/min) at 723 K for 0.3 h and then Dried samples were treated in flowing air at 723 K for 4 h reduced in 5% H /He at 623 K for 0.5 h. After exposure in order to form the corresponding mixed metal oxides. 2 to CO (Cambridge Isotope Laboratories, Inc.) for 0.15 h Residual potassium in all dry samples was less than 0.1 wt.% 2 at room temperature, the samples were flushed with He to before alkali impregnation. The controlled pH coprecipita- remove gas phase and weakly adsorbed CO . The temper- tion technique produces uniform precipitates, which lead, 2 ature was then increased up to 723 K at a rate of 0.5 K/s, after thermal treatment, to mixed metal oxides with high and the desorption profile of CO was monitored by mass surface area and intimate contact between components (8). 2 spectrometry. CuZnAlO samples were prepared using the same proce- x The density of basic sites was determined using a 13CO / dures as for CuMgCeO , except that the pH was held at 7.0 2 x 12CO isotopic exchange method. This method provides a and the dried powders were treated in flowing air at 623 K 2 direct measure of the number of basic sites kinetically avail- for 4 h (11, 12). K and Cs were introduced by incipient able for CO adsorption at typical reaction temperatures. wetness of the oxidized samples using K CO (0.25 M) and 2 2 3 This technique also provides the reactivity distribution of CH COOCs (0.25 M) aqueous solutions (K CO : Fisher 3 2 3 basic sites and a direct measure of surface nonuniformity. In Scientific, A.C.S. certified; CH COOCs: Strem Chemicals, 3 this method, a prereduced catalyst was exposed to a 0.1% 99.9%). 13 CO2/0.1% Ar/He (Cambridge Isotope Laboratories, Inc.) stream at 573 K. After 13CO reached a constant concen- Structural Characterization 2 tration in the effluent stream (0.5 h), the flow was switched 12 Powder X-ray diffraction (XRD) patterns were collected to 0.1% CO2/He (Cambridge Isotope Laboratories, Inc.). 13 using a D5000 Siemens Diffractometer and monochromatic The decay in the concentration of CO2 as it was replaced 12 Cu-K radiation. Total surface areas were determined us- on the surface by CO2 was followed by mass spectromet- 13 ing the single point BET method by measuring N2 phy- ric analysis of CO2 and Ar concentrations as a function of sisorption at 77 K using a continuous flow Quantasorb Sur- the time elapsed after the isotopic switch. The presence of face Area Analyzer (Quantachrome Corp.). Bulk catalyst Ar permitted corrections for gas holdup and hydrodynamic compositions were measured by atomic absorption spec- delays within the apparatus.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us