Surfaces) Conic Sections (Review) Name Form Example Graph Circle

Surfaces) Conic Sections (Review) Name Form Example Graph Circle

Surfaces) Conic Sections (review) Name Form Example Graph 22 Circle (xh− ) +( yk− ) = r2 2 (xh− ) = ayk( − ) Parabola or 2 ( yk− ) = axh( − ) 22 Ellipse (xh−−) ( yk) +=1 ab22 22 Hyperbola (xh−−) ( yk) − =1 ab22 or xy= k The quadric surfaces are surfaces that can be written in the form: Ax222+++++++++= By Cz Dxy Exz Fyz Hx Iy Jz K 0 where ABC, , ,..., K are constants. There are nine distinct types. These are important, so get familiar with them. You will need to know: (a) The intercepts (the points at which the surface intersects the coordinate axes). (b) The traces (the intersections with the coordinate planes). (c) The sections (the intersections with planes in general). (d) The center (some quadrics have a center; some do not). (e) Symmetry. (f) Boundedness, unboundedness. The ellipsoid: centered at the origin and is symmetric about all three coordinate planes. x2 y2 z2 + + = 1 a2 b2 c2 The hyperboloid of one sheet: unbounded surface, centered at the origin and is symmetric about all three coordinate planes. x2 y2 z2 + − = 1 a2 b2 c2 The hyperboloid of two sheets: unbounded surface, The surface intersects the coordinate axes only at the two vertices (0, 0, ± c) x2 y2 z2 z2 x2 y2 + − = −1 or − − = 1 a2 b2 c2 c2 a2 b2 The elliptic cone: intersects the coordinate axes only at the origin. The surface is unbounded. x2 y2 + = z2 a2 b2 The elliptic paraboloid: the surface does not extend below the xy-plane; it is unbounded above. x2 y2 + = z a2 b2 The hyperbolic paraboloid: symmetry about the xz-plane and yz plane. Sections parallel to the xy-plane are hyperbolas; sections parallel to the other coordinate planes are parabolas. x2 y2 − = z a2 b2 The parabolic cylinder: symmetry about the xy-plane x2 = 4cy The elliptic cylinder: symmetry about the xy-plane x2 y2 + = 1 a2 b2 The hyperbolic cylinder: symmetry about the xy-plane x2 y2 − = 1 a2 b2 Examples: Examples: 1. Sketch they cylinder 25yz22+ 4− 100= 0 2. Sketch they cylinder zx= 2 3. Identify the surface and find the traces. Then sketch the surface. 9x2 + 4y2 − 36z = 0 ).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us