D2.2: Easytv Tools for Improvement of Graphical Interfaces

D2.2: Easytv Tools for Improvement of Graphical Interfaces

Ref. Ares(2020)610364 - 31/01/2020 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement n: 761999 EasyTV: Easing the access of Europeans with disabilities to converging media and content. EasyTV tools for improvement of graphical interfaces EasyTV Project H2020. ICT-19-2017 Media and content convergence. – IA Innovation action. Grant Agreement n°: 761999 Start date of project: 1 Oct. 2017 Duration: 30 months Document. ref.: D4.1 D2.2 EasyTV tools for improvement of graphical interfaces Disclaimer This document contains material, which is the copyright of certain EasyTV contractors, and may not be reproduced or copied without permission. All EasyTV consortium partners have agreed to the full publication of this document. The commercial use of any information contained in this document may require a license from the proprietor of that information. The reproduction of this document or of parts of it requires an agreement with the proprietor of that information. The document must be referenced if is used in a publication. The EasyTV Consortium consists of the following partners: Partner Name Short Country name 1 Universidad Politécnica de Madrid UPM ES 2 Engineering Ingegneria Informatica S.P.A. ENG IT Centre for Research and Technology Hellas/Information 3 CERTH GR Technologies Institute 4 Mediavoice SRL MV IT 5 Universitat Autònoma Barcelona UAB ES 6 Corporació Catalana de Mitjans Audiovisuals SA CCMA ES 7 ARX.NET SA ARX GR Fundación Confederación Nacional Sordos España para la ES 8 FCNSE supresión de barreras de comunicación Sezione Provinciale di Roma dell’Unione Italiana dei ciechi e 9 UICI IT degli ipovedenti 2 D2.2 EasyTV tools for improvement of graphical interfaces H2020. ICT-19-2017 Media and Content Convergence – IA PROGRAMME NAME: Innovation Action PROJECT NUMBER: 761999 PROJECT TITLE: EASYTV RESPONSIBLE UNIT: UPM INVOLVED UNITS: CERTH DOCUMENT NUMBER: D2.2 DOCUMENT TITLE: EasyTV tools for improvement of graphical interfaces WORK-PACKAGE: WP 2 DELIVERABLE TYPE: Prototype CONTRACTUAL DATE OF 31-01-2020 DELIVERY: LAST UPDATE: DISTRIBUTION LEVEL: PU 3 D2.2 EasyTV tools for improvement of graphical interfaces Distribution level: PU = Public, RE = Restricted to a group of the specified Consortium, PP = Restricted to other program participants (including Commission Services), CO = Confidential, only for members of the LASIE Consortium (including the Commission Services) 4 D2.2 EasyTV tools for improvement of graphical interfaces Document History VERSION DATE STATUS AUTHORS, REVIEWER DESCRIPTION v. 0.1 28/11/2019 Draft UPM Table of Contents definition and document structure V 1.0 17/12/2019 Draft UPM First document version V 1.1 19/12/2019 Draft UPM Added subtitles adaptation and services indicators sections V 1.2 20/12/2019 Draft UPM Added Executive Summary and last corrections V 1.3 22/01/2020 Draft Georgios Gerovasilis Chapter 8 (CERTH/ITI) Nikolaos Kaklanis (CERTH/ITI) Konstantinos Votis (CERTH/ITI) Dimitrios Tzovaras (CERTH/ITI) 5 D2.2 EasyTV tools for improvement of graphical interfaces Definitions, Acronyms and Abbreviations ACRONYMS / ABBREVIATIONS DESCRIPTION CSS Cascading style sheets DR Danish Broadcasting Corporation HbbTV Hybrid Broadcast Broadband Television CS Companion Screen QoE Quality of Experience SIFT Scale Invariant Feature Transform SURF Speeded-up Robust Features ORB Oriented Fast and Rotate Brief KCF Kernelized Correlation Filter MOSSE Minimum Output Sum of Squared Error Discriminative Correlation Filter with CSRT Channel and Spatial Reliability Region-Based Convolutional Neural RCNN Network SSD Single Shot Detector YOLO You Only Look Once IoU Intersection over Union FPS Frames Per Second mAP Mean Average Precision DoW Description of Work 6 D2.2 EasyTV tools for improvement of graphical interfaces Table of Contents INTRODUCTION .................................................................................................................................... 11 Hybrid television and content access problems ............................................................................... 12 Lack of media content accessibility in TV consumption ................................................................... 14 Deep learning for information extraction .......................................................................................... 15 SUBTITLES ADAPTATION................................................................................................................... 16 SERVICES INDICATORS ..................................................................................................................... 17 DEEP LEARNING TECHNIQUES FOR VISUAL INFORMATION GATHERING ................................. 18 Proposed system for data extraction ................................................................................................ 18 Video analysis for facial information detection ................................................................................. 19 Face Detection ................................................................................................................................. 20 Face Tracking ................................................................................................................................... 21 Face Recognition and Characterization ........................................................................................... 24 Face speaking detection .................................................................................................................. 26 Information storage .......................................................................................................................... 28 Data structure........................................................................................................................................ 28 Annotation tool for faces data extraction ............................................................................................... 29 ACCESS SERVICES FOR THE HBBTV ENVIRONMENT BASED ON THE IMAGE ANALYSIS ...... 31 Modular system architecture ............................................................................................................ 31 Access services in the CS application ............................................................................................. 32 Face magnification service .................................................................................................................... 32 Character recognition ............................................................................................................................ 33 User interface Adaptation ................................................................................................................... 33 Indicative use case ........................................................................................................................... 34 CONCLUSIONS .................................................................................................................................... 36 NEXT STEPS AND FUTURE WORK ................................................................................................... 37 REFERENCES ...................................................................................................................................... 38 7 D2.2 EasyTV tools for improvement of graphical interfaces List of Figures Figure 1 - Average audience composition by platform among adults aged 18+ [from Nielsen report Q1 2016 (NIELSEN a, 2017), Q2 2016 (NIELSEN b, 2017), Q3 2016 (NIELSEN c, 2017), Q4 2016 (NIELSEN d, 2017), Q1 2017 (NIELSEN e, 2018), Q2 2017 (NIELSEN f, 2018 ............................ 13 Figure 2 - Subtitles Customization pop up. .................................................................................... 16 Figure 3 - Font-color and background color pop up, ...................................................................... 17 Figure 4 - DR icons for accesibility services. ................................................................................. 17 Figure 5 - EasyTV designed icons. ............................................................................................... 18 Figure 6 - Main architecture for data extraction. a) Face detection b) Face tracking c) Information extraction, including face recognition, characterization and speaking detection. ........................... 19 Figure 7 - Example of detected faces in video. .............................................................................. 21 Figure 8 - Failure examples during tracking with tested algorithms. GOTURN (red), CSRT (yellow), KCF (blue) and Re3 (magenta). Slow motion (left), fast motion (centre) and occlusion (right). ...... 23 Figure 9 - Performance comparison between the face detector applied in all frames and the tracking over the first detected face. ........................................................................................................... 23 Figure 10 - Examples of the main characters (top) and some images in our dataset for some of them (bottom). ....................................................................................................................................... 24 Figure 11 - Architecture for face recognition and characterization network. ................................... 25 Figure 12 - Landmark detection and key points pairs difference. ................................................... 27

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    42 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us