View This Volume's Front and Back Matter

View This Volume's Front and Back Matter

Combinatorics o f Nonnegative Matrice s This page intentionally left blank 10.1090/mmono/213 Translations o f MATHEMATICAL MONOGRAPHS Volume 21 3 Combinatorics o f Nonnegative Matrice s V. N. Sachko v V. E. Tarakano v Translated b y Valentin F . Kolchl n | yj | America n Mathematica l Societ y Providence, Rhod e Islan d EDITORIAL COMMITTE E AMS Subcommitte e Robert D . MacPherso n Grigorii A . Marguli s James D . Stashef f (Chair ) ASL Subcommitte e Steffe n Lemp p (Chair ) IMS Subcommitte e Mar k I . Freidli n (Chair ) B. H . Ca^KOB , B . E . TapaKaHO B KOMBMHATOPMKA HEOTPMUATEJIBHbl X MATPM U Hay^Hoe 143/iaTeJibCTB O TBE[ , MocKBa , 200 0 Translated fro m th e Russia n b y Dr . Valenti n F . Kolchi n 2000 Mathematics Subject Classification. Primar y 05-02 ; Secondary 05C50 , 15-02 , 15A48 , 93-02. Library o f Congress Cataloging-in-Publicatio n Dat a Sachkov, Vladimi r Nikolaevich . [Kombinatorika neotritsatel'nyk h matrits . English ] Combinatorics o f nonnegativ e matrice s / V . N . Sachkov , V . E . Tarakano v ; translate d b y Valentin F . Kolchin . p. cm . — (Translations o f mathematical monographs , ISS N 0065-928 2 ; v. 213) Includes bibliographica l reference s an d index. ISBN 0-8218-2788- X (acid-fre e paper ) 1. Non-negative matrices. 2 . Combinatorial analysis . I . Tarakanov, V . E. (Valerii Evgen'evich ) II. Title . III . Series. QA188.S1913 200 2 512.9'434—dc21 200207439 2 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them, ar e permitted t o make fai r us e of the material, suc h a s to copy a chapter fo r use in teachin g o r research . Permissio n i s granted t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customary acknowledgmen t o f the source i s given. Republication, systemati c copying , or multiple reproductio n o f any material in this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addressed to the Acquisitions Department , America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Requests ca n also b e made b y e-mail t o reprint-permiss ion0ams.org. © 200 2 b y the American Mathematica l Society . Al l rights reserved . The America n Mathematica l Societ y retain s al l rights except thos e grante d t o the United State s Government . Printed i n the United State s o f America . @ Th e paper use d i n this boo k i s acid-free an d falls withi n the guidelines established t o ensure permanenc e an d durability. Visit th e AMS hom e pag e a t http: //www. ams. org/ 10 9 8 7 6 5 4 3 2 1 0 7 06 05 04 03 0 2 Contents Preface vi i List o f Notation i x Chapter 1 . Matrice s an d Configuration s 1 Introduction 1 1.1. Definition s an d example s 2 1.2. Ter m rank . Arrangemen t o f positive element s 9 1.3. Combinatoria l theor y o f cyclic matrices 2 7 Chapter 2 . Ryse r Classe s 4 5 Introduction 4 5 2.1. A constructive descriptio n o f Ryser classe s 4 6 2.2. Invarian t set s 5 8 2.3. Estimate s o f the term ran k 6 9 Chapter 3 . Nonnegativ e Matrice s an d Extrema l Combinatoria l Problem s 8 3 Introduction 8 3 3.1. Forbidde n configuration s 8 4 3.2. Coverin g proble m 9 0 3.3. Th e va n de r Waerden-Egorychev-Falikman Theore m 10 6 Chapter 4 . Asymptoti c Method s i n the Stud y o f Nonnegative Matrice s 11 7 Introduction 11 7 4.1. Nonnegativ e matrice s an d graph s 11 8 4.2. Asymptotic s o f the numbe r o f primitive (0 , l)-matrices 13 1 4.3. Asymptotic s o f the permanen t o f a random (0 , l)-matrix 13 5 4.4. Rando m lattice s an d Boolea n algebra s 13 8 4.5. Covering s o f sets an d (0 , l)-matrices 14 3 4.6. Rando m covering s o f sets 15 1 Chapter 5 . Totall y Indecomposable , Chainable , an d Prim e Matrice s 15 9 Introduction 15 9 5.1. Totall y indecomposabl e an d chainabl e matrice s 16 1 5.2. Rectangula r nonnegativ e matrice s 17 0 5.3. Rectangula r nonnegativ e chainabl e matrice s 18 4 5.4. Extensio n o f partial diagonal s 19 2 5.5. Prim e Boolea n matrice s 19 9 5.6. Prim e nonnegativ e matrice s 20 8 vi CONTENT S Chapter 6 . Sequence s o f Nonnegative Matrice s 21 3 Introduction 21 3 6.1. Directe d graph s o f nonnegative matrice s 21 5 6.2. Irreducibl e an d primitiv e matrice s 22 1 6.3. Tournamen t matrice s 22 7 6.4. Associate d operato r 23 2 6.5. Sequence s o f powers o f a nonnegative matri x 24 3 6.6. Ergodicit y o f sequences o f nonnegative matrice s 25 0 Bibliography 26 3 Index 267 Preface The subject o f this book i s nonnegative matrices. Th e variety o f combinatoria l properties o f such matrices is widely discussed i n mathematical literature, and ther e are lots o f papers on this topic. However , there ar e only a fe w monographs devote d specially t o th e combinatoria l propertie s o f nonnegative matrices . Th e author s o f the present boo k have tried to concentrate not o n traditional algebrai c and, i n par- ticular, spectra l propertie s o f nonnegativ e matrices , bu t rathe r o n thei r relation s to various mathematical structure s studie d i n combinatorics. I n additio n t o appli - cations i n grap h theory , Marko v chains , tournaments , an d abstrac t automata , w e consider relation s betwee n nonnegativ e matrice s an d suc h structure s a s covering s and minimal coverings o f sets by families o f subsets. Alon g with the study o f combi- natorial notion s which can be interpreted usin g nonnegative matrices , considerabl e attention i s given to the study o f various properties o f the matrices themselves an d also o f the classe s forme d b y th e matrice s havin g a give n structure . Asymptoti c properties o f nonnegative matrice s a s som e o f the parameter s ten d t o infinit y ar e also investigated . In th e book , bot h enumerativ e an d extrema l combinatoria l problem s ar e pre - sented. I n the study o f enumerative problems, along with combinatorial methods we use th e probabilisti c approach . Amon g th e extrema l problems , w e conside r bot h problems directl y relate d t o matrice s an d problem s wher e nonnegativ e matrice s provide suitable tool s o f investigation . In connectio n wit h ou r combinatoria l approach , a n essentia l rol e i s playe d b y the binar y structur e o f a nonnegative matrix , tha t is , the arrangemen t o f positiv e elements and zeros. I t should be noted that this structure is related to the properties of matrice s which , a t firs t sight , ar e no t o f combinatoria l character . On e suc h example i s th e applicatio n o f nonnegativ e matrice s i n th e stud y o f ergodicit y o f Markov chains i n Chapter 6 . Th e binary characte r o f nonnegative matrice s ca n b e seen i n the fac t tha t man y essentia l properties o f such matrices ar e determined b y the propertie s o f their supports , tha t is , b y the (0 , l)-matrices whic h ar e obtaine d by replacing the positiv e element s o f a matrix b y ones . Therefore , w e shall devot e a lo t o f attention t o (0 , l)-matrices. In analyzing (0 , l)-matrices, we distinguish between local and global properties. Global propertie s characteriz e a matri x a s a whole , wherea s loca l propertie s ar e concerned with relations between parts o f the matrix. Example s o f global properties are th e distributio n o f positiv e an d zer o element s i n row s an d columns , th e ter m rank, an d the cove r rank. Loca l properties include , fo r example , various condition s on the inne r products o f rows and column s (viewe d a s vectors o f the correspondin g space ove r rea l numbers ) an d th e presenc e (o r absence ) o f submatrices o f a give n structure.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us