Handout - Derivative - Chain Rule

Handout - Derivative - Chain Rule

Handout - Derivative - Chain Rule Power-Chain Rule a,b are constants. Function Derivative dy y = a · xn = a · n · xn−1 Power Rule dx dy du y = a · un = a · n · un−1 · Power-Chain Rule dx dx Ex1a. Find the derivative of y = 8(6x + 21)8 Answer: y0 = 384(6x + 21)7 a = 8, n = 8 du u = 6x + 21 ⇒ dx = 6 ⇒ y0 = 8 · 8 · (6x + 21)7 · 6 4 Ex1b. Find the derivative of y = 8 4x2 + 7x + 28 3 Answer: y0 = 32(8x + 7) 4x2 + 7x + 28 a = 8, n = 4 2 du u = 4x + 7x + 28 ⇒ dx = 8x + 7 ⇒ y0 = 8 · 4 · 4x2 + 7x + 283 · (8x + 7) p Ex1c. Find the derivative of y = 2 6x2 + 4x + 26 12x + 4 Answer: y0 = √ 6x2 + 4x + 26 1 a = 2, n = 2 2 du u = 6x + 4x + 26 ⇒ dx = 12x + 4 ⇒ y0 = 2 · 1 · √ 1 · (12x + 4) 2 6x2+4x+26 1 Exercises Find the derivatives of the expressions a) 5(9x + 25)8 b) 7(2x + 24)8 c) 2 4x2 + 4x + 219 d)6 7x2 + 4x + 224 e) 7 7x2 + 9x + 2413/3 f)3 7x2 + 4x + 2922/3 √ √ g) 5 x2 + 8x + 25 h)7 7x2 + 3x + 24 i) √ 8 j) √ 3 3x2+3x+22 2x2+2x+22 Answers a) 360(9x + 25)7; b) 112(2x + 24)7; c) 18(8x + 4) 4x2 + 4x + 218; d) 24(14x + 4) 7x2 + 4x + 223; 91 2 10/3 2 19/3 e) 3 (14x + 9) 7x + 9x + 24 ; f) 22(14x + 4) 7x + 4x + 29 ; 5(2x+8) 7(14x+3) g) √ ; h) √ ; 2 x2+8x+25 2 7x2+3x+24 i) − 4(6x+3) ; j) − 3(4x+2) ; (3x2+3x+22)3/2 2(2x2+2x+22)3/2 2 Sine and Cosine - Chain Rules a,b are constants. Function Derivative dy y = sin(x) = cos(x) Sine Rule dx dy y = cos(x) = − sin(x) Cosine Rule dx dy du y = a · sin(u) = a · cos(u) · Chain-Sine Rule dx dx dy du y = a · cos(u) = −a · sin(u) · Chain-Cosine Rule dx dx dy Ex2a. Find where y = 2 sin 9x3 + 3x2 + 1 dx Answer: 2 27x2 + 6x cos 9x3 + 3x2 + 1 a = 2 3 2 du 2 u = 9x + 3x + 1 ⇒ dx = 27x + 6x dy Ex2b. Find where y = 5 cos 9x5 + 5x4 + 3 dx Answer: −5 45x4 + 20x3 sin 9x5 + 5x4 + 3 a = 5 5 4 du 4 3 u = 9x + 5x + 3 ⇒ dx = 45x + 20x Ex2c. Find the derivative of y = 4 sin(4x) + 4 cos(5x)4 Answer: 4 · 16 cos(4x) − 20 sin(5x) · 4 sin(4x) + 4 cos(5x)3 n = 4 u = 4 sin(4x) + 4 cos(5x) du ⇒ dx = 16 cos(4x) − 20 sin(5x) 3 Exercises Find the derivatives of the expressions a) 7 sin 7x3 + 7x2 + 8 b) 5 cos 2x4 + 7x3 + 9 c) 8 sin 8x3 + 9x2 + 1 d) 5 cos 6x4 + 8x3 + 2 e) sin(x) + 9 cos x4 4 f)2 sin(6x) + 9 cos 3x2 3 g) 4 sin 5x3 + 8 cos 8x5 5 h) sin 7x3 + 2 cos 6x4 3 1 3 i) 5 sin 5x5 + 5 cos 7x4 2 j)6 sin 2x3 + 5 cos 8x2 2 Answers a) 7 21x2 + 14x cos 7x3 + 7x2 + 8; b) −5 8x3 + 21x2 sin 2x4 + 7x3 + 9; c) 8 24x2 + 18x cos 8x3 + 9x2 + 1; d) −5 24x3 + 24x2 sin 6x4 + 8x3 + 2; e) 4 · cos(x) − 36x3 sin x4 · sin(x) + 9 cos x4 3; f) 3 · 12 cos(6x) − 54x sin 3x2 · 2 sin(6x) + 9 cos 3x2 2; g) 5 · 60x2 cos 5x3 − 320x4 sin 8x5 · 4 sin 5x3 + 8 cos 8x5 4; h) 3 · 21x2 cos 7x3 − 48x3 sin 6x4 · sin 7x3 + 2 cos 6x4 2; 1 1 4 5 3 4 5 4 − 2 i) 2 · 125x cos 5x − 140x sin 7x · 5 sin 5x + 5 cos 7x ; 1 3 2 3 2 3 2 2 j) 2 · 36x cos 2x − 80x sin 8x · 6 sin 2x + 5 cos 8x ; 4 Exponent and Logarithmic - Chain Rules a,b are constants. Function Derivative dy y = ex = ex Exponential Function Rule dx dy 1 y = ln(x) = Logarithmic Function Rule dx x dy du y = a · eu = a · eu · Chain-Exponent Rule dx dx dy a du y = a · ln(u) = · Chain-Log Rule dx u dx Ex3a. Find the derivative of y = 6e7x+22 Answer: y0 = 42e7x+22 a = 6 du 0 7x+22 u = 7x + 22 ⇒ dx = 7 ⇒ y = 6 · e · 7 2 Ex3b. Find the derivative of y = 6e7x +3x+22 2 Answer: y0 = 6 · (14x + 3) · e7x +3x+22 a = 6 2 du 0 7x2+3x+22 u = 7x + 3x + 22 ⇒ dx = 14x + 3 ⇒ y = 6 · e · 14x + 3 8/3 7/2 Ex3c. Find the derivative of y = −2e8x +7x 5/2 5/3 49x 64x 8/3 7/2 Answer: y0 = −2 · + · e8x +7x 2 3 a = −2 8/3 7/2 du 49x5/2 64x5/3 u = 8x + 7x ⇒ dx = 2 + 3 0 8x8/3+7x7/2 49x5/2 64x5/3 ⇒ y = −2 · e · 2 + 3 5 Ex3d. Find the derivative of y = 7 ln(3x + 26) 21 Answer: y0 = 3x + 26 a = 7 du 0 7 u = 3x + 26 ⇒ dx = 3 ⇒ y = 3x+26 · 3 Ex3e. Find the derivative of y = 8 ln 2x2 + 9x + 26 8(4x + 9) Answer: y0 = 2x2 + 9x + 26 a = 8 2 du u = 2x + 9x + 26 ⇒ dx = 4x + 9 0 8 ⇒ y = 2x2+9x+26 · 4x + 9 Ex3f. Find the derivative of y = 7 log 9x5/2 + 5x5/3 45x3/2 25x2/3 1 Answer: y0 = 7 · + · 2 3 9x5/2 + 5x5/3 a = 7 5/2 5/3 du 45x3/2 25x2/3 u = 9x + 5x ⇒ dx = 2 + 3 0 9x5/2+5x5/3 45x3/2 25x2/3 ⇒ y = 7 · e · 2 + 3 6 Exercises Find the derivatives of the expressions a) 6e8x+26 b) 6e6x+21 c) 4 ln(2x + 21) d) 6 ln(3x + 27) e) 6e3x2+8x+27 f)8e4x2+6x+29 g) 4 ln 4x2 + 8x + 29 h)6 ln 7x2 + 3x + 25 √ √ i) 6e5x8/3+5 x j)9 ln 9x8/3 + 8 x 8x+26 6x+21 8 18 Answers a) 48e ; b) 36e ; c) 2x+21 ; d) 3x+27 ; e) 6 · (6x + 8) · e3x2+8x+27; f) 8 · (8x + 6) · e4x2+6x+29; 4(8x+8) 6(14x+3) g) 4x2+8x+29 ; h) 7x2+3x+25 ; 5/3 8/3 √ i) 6 · 40x + √5 · e5x +5 x; j) 9 · 24x5/3 + √4 · 1 √ ; 3 2 x x 9x8/3+8 x 7 Exercises Find the derivatives of the expressions a) 5 sin(5x) + 4e4x+1 + √4 b) 2 cos(5x) + 5e3x+1 + √ 8 x x−1 c) 2 cos(4x) + 4 ln(3x − 1) − 7 d) cos(5x) + 5ex+1 − 7(x − 1)2/3 (3x+1)3/5 √ 5 √ 3 e) 3 cos(5x) + 2 ln(4x) + 8 x f) cos(4x) + 3 ln(3x) − 7 5 x 1 5 − 2 2 √6 3x √4 g) 4 sin(3x) + 3 ln(x) − x h) 4 sin(5x) + e − 4 x Answers a) 25 cos(5x) + 16e4x+1 − 2 ; b) −10 sin(5x) + 15e3x+1 − 4 ; x3/2 (x−1)3/2 c) −8 sin(4x) + 12 + 63 ; d) −5 sin(5x) + 5ex+1 − √14 ; 3x−1 5(3x+1)8/5 3 3 x−1 √ 4 2 √4 e) 5 · − 15 sin(5x) + x + x · 3 cos(5x) + 2 ln(4x) + 8 x ; √ 2 f) 3 · − 4 sin(4x) + 3 − 7 · cos(4x) + 3 ln(3x) − 7 5 x ; x 5x4/5 3 − 2 g) − 1 · 12 cos(3x) + 3 + 3 · 4 sin(3x) + 3 ln(x) − √6 ; 2 x x3/2 x 3 2 h) 5 · 20 cos(5x) + 3e3x + 1 · 4 sin(5x) + e3x − √4 ; 2 x5/4 4 x 8.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us