
Sym metry , I n tegra b i l i ty a nd Geometry : Methods a nd App l i ca t i ons S I GMA 6 ( 20 1 0 ) , 76 , 45 pa ges Erlangen Program at Large - 1 : Geometry of Invariants Vladimir V . KISIL School of Mathematics , University of Leeds , Leeds LS 2 9 JT , UK E - mail : k is i l v @ maths.leeds. ac.uk URL : h t tp : / / www . mat hs . l e eds . ac . uk = ∼ k i s i lv / Received April 20 , 201 0 , in final form September 1 0 , 20 1 0 ; Published online September 26 , 20 1 0 doi:10.3842/SIG MA .2010.076 Abstract . This paper presents geometrical foundation for a systematic treatment of three main ( elliptic , parabolic and hyperbolic ) types of analytic function theories based on the representation theory of SL2(R) group . We describe here geometries of corresponding do - mains . The principal ro ^ le is played by Clifford algebras of matching types . In this paper we also generalise the Fillmore { Springer { Cnops construction which describes cycles as points in the extended space . This allows to consider many algebraic and geometric invariants of cycles within the Erlangen program approach . Key words : analytic function theory ; semisimple groups ; elliptic ; parabolic ; hyperbolic ; Clifford algebras ; complex numbers ; dual numbers ; double numbers ; split - complex numbers ; Mo ¨ bius transformations 201 0 Mathematics Subject Classification : 30 G 35 ; 22 E 46 ; 30 F 45 ; 32 F 45 Contents 1 I n t r o d u ct io n 2 1 . 1 Backgr o u n d a n d h i s t o r y . ..................... 2 1 . 2 H igh l ight s o f o b t ai n ed r e s u l t s . ..................... 3 1 . 3 T he p a p e r o utlin e . ..................... 4 2 E l l ipt ic , pa r abo l ic and hyp erbolic h o m ogen eous spa c e s 5 2:1 SL2( R) gr o up a n d Cli f for d alg e br as . ................5 2 . 2 A ctio n s o f s u b gr o u p s . ..................... 6 2 . 3 I n v a r ian c e o f c y c l e s . ..................... 1 0 3 Space of cy cle s 1 1 3 . 1 F i l l m o r e { Sprin g e r { C n o p s c o n s t r u c t i o n ( F S C c ) . ...................11 3 . 2 F ir st in v ari a nt s o f cy c l e s . ..................... 14 4 J oi n t i n v aria nt s : o r t hogo na l i ty a nd inv e r s ions 16 4 . 1 In v a r ian t o r t hog o n ali t y ty p e c o n di t ion s . ...................16 4.2 Inversions in cycles . ..................... 1 9 4 . 3 F oc al o rt hog on a lit y . ..................... 2 1 5 M et ri c pro per t ies f r o m cy c l e inva ria n t s 24 5 . 1 Dista n c es a n d len gt hs . ..................... 24 Sym metry comma I n tegra b i l i ty a nd Geometry : .... Methods a nd App l i ca t i ons .... S I GMA 6 open parenthesis 20 1 0 closing nnoindent Sym metry , I n tegra b i l i ty a nd Geometry : n h f i l l Methods a nd App l i ca t i ons n h f i l l S IGMA6 ( 20 1 0 ) , 76 , 45 pa ges parenthesis5 comma . 2 76 C commao n 45f o pa r ges mal p r op e r ti e s o f M o¨ bi u s m a p s . Erlangen..................... .... Program .... at .... Large hyphen 1 : .... Geometry .... of Invariants nnoindentVladimir. 2 VErlangen 7 period 5 . 3 KISILn Ph f i ll e rProgram p e n dn ich u f i la l l rityat an h f i n l l Large d o r− t ho1 go : n nh f i l a l lGeometry it y .n h . f i l l . of Invariants School..................... of Mathematics comma .. University of Leeds comma Leeds LS 2 9 JT comma .. UK nnoindentE hyphen. mailVladimir 29 : .. k is V .. .i l KISIL v .. at .. m a t h s period l e e d s period .. a c period u k URL : .. h t tp : slash slash www period mat hs period l e eds period ac period uk slash thicksim k i s i lv slash nnoindentReceived AprilSchool 20 comma of Mathematics 201 0 comma in , finalnquad formUniversity September 1 0of comma Leeds 20 ,1 0 Leeds semicolon LS Published 2 9 JT , onlinenquad SeptemberUK 26 comma 20 1 0 E d− omail i : 1 0 :periodnquad 3 8k 4 2 i sslashnquad SI G ..i M lA v ..nquad period 2$ 0 @ 1 0 $ periodnquad 0 7maths.leeds. 6 nquad a c . u k Abstract period This paper presents geometrical foundation for a systematic treatment of three nnoindentmain openURL parenthesis : nquad ellipticht comma tp : parabolic //www. and mathshyperbolic . closing l e eds parenthesis . ac .types uk of $/ analyticnsim function$ theories k i s based i l v on / the representation theory of SL sub 2 open parenthesis R closing parenthesis group period .. We describe here geometries of corresponding do hyphennnoindent Received April 20 , 201 0 , in final form September 1 0 , 20 1 0 ; Published online September 26 , 20 1 0 mains period The principal r circumflex-o le is played by Clifford algebras of matching types period In this paper we n centerlinealso generalisefdoi:10.3842/SIG the Fillmore endash Springer endash Cnopsnquad constructionMA nquad which. 2 describes 0 1 0 .cycles 0 7 as 6 pointsg in the extended space period .. This allows to consider many algebraic and geometric invariants of n centerlinecycles withinf Abstract the Erlangen . program This paper approach presents period geometrical foundation for a systematic treatment of three g Key words : .. analytic function theory semicolon .. semisimple groups semicolon .. elliptic semicolon .. parabolic semicolon .. hyperbolic semicolonn centerline fmain ( elliptic , parabolic and hyperbolic ) types of analytic function theories based on the g Clifford algebras semicolon complex numbers semicolon dual numbers semicolon double numbers semicolon split hyphen complex numbers semicolonn centerline f representation theory of $ SL f 2 g ( R ) $ group . nquad We describe here geometries of corresponding do − g M dieresis-o bius transformations n centerline201 0 Mathematicsfmains Subject . The Classification principal : r 30 G $ 35nhat semicolonfog $ 22 le E 46 is semicolon played 30 by F 45 Clifford semicolon algebras 32 F 45 of matching types . In this paper we g Contents n centerline1 .... I n ....f talso r o d .... generalise u ct io n .... the 2 Fillmore −− Springer −− Cnops construction which describes cycles as points g 1 period 1 .. Backgr o .. u n d .. a n .. d h .. i s t o r y .. period .. period .. period .. period .. period .. period .. period .. period .. period ..n centerline period .. periodf in .. the period extended .. period .. space period . ..n periodquad ..This period allows .. period to .. period consider .. period many .. period algebraic .. period and .. period geometric .. period invariants .. period .. of g period .. period .. period .. period .. period .. period .. period .. period .. 2 n centerline1 period 2 ..f cycles H igh l ight within s .. o f the o b t Erlangen ai n ed .. r program e s u l t s approach .. period ..period . g .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. periodn centerline .. periodfKey .. period words .. period : nquad .. periodanalytic .. period function .. 3 theory ; nquad semisimple groups ; nquad e l l i p t i c ; nquad p a r a b o l i c ; nquad hyperbolic ; g 1 period 3 .. T he .. p .. a p e r o utlin e period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. periodn centerline .. periodf ..Clifford period .. period algebras .. period ; complex .. period numbers.. period .. ; period dual .. numbers period .. period ; double .. period numbers .. period ; ..split period− ..complex period .. periodnumbers .. ; g period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. 4 n centerline2 .... E l l iptfM ic comma $ nddot paf ro abog $ l ic bius .... and transformations .... hyp erbolic h o ....g m ogen eous .... spa c e s .... 5 2 period 1 S L sub 2 open parenthesis R closing parenthesis gr o up a n d .. Cli f for d alg e br as .. period .. period .. period .. period .. periodn centerline .. periodf201 .. period 0 Mathematics .. period .. period Subject .. period Classification .. period .. period : .. 30 period G 35 .. period ; 22 E .. period46 ; 30.. period F 45 .. ; period 32 F .. 45 periodg .. period .. period .. period .. period .. period .. period .. period .. 5 nnoindent2 period 2Contents .. A ctio n s o f .. s u b gr o .. u p s .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. period .. periodnnoindent .. period1 ..n h period f i l l ..I period n n h f.. i lperiod l t r .. o period d n h .. f period i l l u .. ct period i o n.. periodn h f i l ..l 62 2 period 3 .. I .. n v .. a r ian c e o f .
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages50 Page
-
File Size-