Bimodules Over Simple Finite-Dimensional Jordan

Bimodules Over Simple Finite-Dimensional Jordan

BIMODULES OVER SIMPLE FINITE-DIMENSIONAL JORDAN SUPERALGEBRAS Consuelo Mart¶³nezL¶opez Workshop on Nonassociative Algebras Toronto, 12-14 May 2005 SUPERALGEBRA : A = A0¹ + A1¹, A¹i ¢ A¹j ⊆ Ai+¹j a Z=2Z-graded algebra EX. V vector space of countable dimension, G(V ) = G(V )0¹ + G(V )1¹ Grassmann algebra over V , G(A) = A0¹ ­ G(V )0¹ + A1¹ ­ G(V )1¹ · A ­ G(V ) Grassmann enveloping algebra of A V a variety of algebras (associative, Lie, Jordan,...) DEF. A = A0¹+A1¹ is a V-superalgebra if G(A) 2 V. J = J0¹ + J1¹ is a Jordan superalgebra if it satis¯es SJ1. Supercommutativity a ¢ b = (¡1)jajjbjb ¢ a, SJ2. Super Jordan identity (a ¢ b) ¢ (c ¢ d) + (¡1)jbjjcj(a ¢ c) ¢ (b ¢ d)+ (¡1)jbjjdj+jcjjdj(a ¢ d) ¢ (b ¢ c) = ((a ¢ b) ¢ c) ¢ d + (¡1)jcjjdj+jbjjc((a ¢ d) ¢ c) ¢ b+ (¡1)jajjbj+jajjcj+jajjdj+jcjjdj((b ¢ d) ¢ c) ¢ a. JORDAN SUPERALGEBRAS A = A0¹ + A1¹ associative superalgebra (+) 1 jajjbj A = (A; a¢b = 2 (ab+(¡1) ba) Jordan super- algebra (+) J = J0¹ + J1¹ · A special. Otherwise excep- tional (+) (A) A , A = Mm+n(F ) full linear superalgebra µ ¶ a b (Q) A(+) , A = f j a; b 2 M (F )g b a n If ? : A ! A is an involution : (a?)? = a,(ab)? = (¡1)jajjbjb?a?. H(A; ?) = fa 2 Aja? = ag · A(+) µ ¶ I 0 (BC) M (F ), Q = m , m+2n 0 S 0 12n 0 1 ::: B ¡1 0 ::: C B C S = B ::::: C 2n @ A ::: 0 1 µ :::¶ ¡µ1 0 ¶ a b aT ¡cT ? : ! Q¡1 Q, a 2 M (F ), c d bT dT m d 2 M2n(F ), H(A; ?) = ospm;2n(F). µ ¶ µ ¶ a b dT ¡bT (P) A = M (F ), ? : ! , n+n c d cT aT µ ¶ a b H(A; ?) = f j a; b; c 2 M (F ); bT = ¡b; c aT n cT = cg. (D) A Superalgebra of a superform V = V0¹ + V1¹, <; >: V £ V ! F a supersymmetric bilinear form J = F 1 + V = (F 1 + V0¹) + V1¹,(®1 + v)(¯1 + w) = (®¯+ < v; w >)1 + (®w + ¯v). (Dt) Jt = (F e1 + F e2) + (F x + F y), t 6= 0 2 1 1 ei = ei; e1e2 = 0; eix = 2 x; eiy = 2 y; [x; y] = e1 + te2. (J) All simple Jordan algebras (F) The 10-dimensional exceptional Kac superalgebra P4 P2 K10 = [(F e1 + i=1 F vi)+F e2]+( i=1 F xi +F yi) 2 ei = ei; e1e2 = 0; e1vi = vi; e2vi = 0; v1v2 = 2e1 = v3v4, 1 1 eixj = 2 xj; eiyj = 2 yj; i; j = 1; 2 y1v1 = x2; y2v1 = ¡x1; x1v2 = ¡y2; x2v2 = y1, x2v3 = x1; y1v3 = y2; x1v4 = x2; y2v4 = y1, [xi; yi] = e1 ¡ 3e2; [x1; x2] = v1; [y1; y2] = v2, [x1; y2] = v3; [x2; y1] = v4. (K) The 3-dimensional Kaplansky superalgebra 2 1 K3 = F e + (F x + F y); e = e; ex = 2 x; 1 ey = 2 y; [x; y] = e. Theorem. (Kac 77, Kantor 89) A simple ¯nite dimen- sional Jordan superalgebra over an algebraically closed ¯eld of zero characteristic is isomorphic to one of the su- peralgebras A, BC, D, P, Q, Dt, F, K, J listed above or to a superalgebra obtained by the Kantor-double process Theorem. (Racine, Zelmanov, J. of Algebra 270, 2003) Every simple Jordan superalgebra over an algebraically closed ¯eld F , chF = p > 2, with its even part semisim- ple is isomorphic to one of the superalgebras mentioned above + Some additional examples in char 3 Jordan Superalgebras de¯ned by Brackets ¡ = ¡0¹ + ¡1¹ an associative commutative superalgebra f; g :¡£¡ ! ¡ a Poisson bracket if f¡¹i; ¡¹jg ⊆ ¡i+¹j and (1) (¡; f; g) is a Lie superalgebra, (2) fab; cg = afb; cg+(¡1)jbjjcjfa; cgb (Leibniz iden- tity) Kantor Double Superalgebra J = ¡ + ¡x, a(bx) = (ab)x,(bx)a = (¡1)jaj(ba)x, jbj (ax)(bx) = (¡1) fa; bg, J0¹ = ¡0¹ + ¡1¹x, J1¹ = ¡1¹ + ¡0¹x. Theorem. (Kantor 1992) Let f; g be a Poisson bracket =) J = ¡ + ¡x is a Jordan superalgebra. Kantor superalgebra ¡ = Grassman algebra on »1;:::;»n Pn jfj @f @g ¡ = ¡0¹ + ¡1¹, ff; gg = (¡1) ½ i=1 @»i @»i n = 1 J ' D(¡1) J = ¡ + ¡x n ¸ 2 J0¹ is not semisimple CHENG-KAC JORDAN SUPERALGEBRAS Z unital associative commutative algebra, d : Z ! Z a derivation, P3 CK(Z; d) = J0¹ + J1¹, J0¹ = Z + i=1 wiZ, J1¹ = xZ + P3 i=1 xiZ free Z-modules of rank 4. 2 2 2 Even part wiwj = 0; i 6= j; w1 = w2 = 1; w3 = ¡1, Notation: xi£i = 0; x1£2 = ¡x2£1 = x3 x1£3 = ¡x3£1 = x2; ¡x2£3 = x3£2 = x1. Module action f; g 2 Z g wjg d xf x(fg) xj(fg ) xif xi(fg)xi£j(fg) Bracket on M xg xjg d d xf f g ¡ fg ¡wj(fg) xif wi(fg) 0 CK(Z; d) is simple () Z does not contain proper d-invariant ideals. p B(m) = F [a1; : : : ; am j ai = 0] B(m; n) = B(m) ­ G(n) G(n) =< 1;»1;:::;»n > Theorem. (M., Zelmanov, J. of Algebra 236, 2001) Let J = J0¹ +J1¹ be a ¯nite dimensional simple unital Jordan superalgebra over an algebraically closed ¯eld F , chF = p > 2, J0¹ not semisimple. Then J ' B(m; n) + B(m; n)x a Kantor double or J ' CK(B(m); d): SPECIALITY King, McCrimmon (J. Algebra 149, 1995) - The Kantor Double of a bracket of vector ¯eld type (fa; bg = a0b ¡ ab0 0 a derivation) is special. @f @g @f @g - The Kantor Double of ff; gg = @x @y ¡ @y @x on F [x; y] is exceptional. Shestakov (1993) - A Kantor Double of Poisson bracket <; >:¡£¡ ! ¡ is special i® << ¡; ¡ >; ¡ >= (0). - A Kantor Double of a Poisson bracket is i-special (homomorphic image of a special superalgebra) Theorem. (M., Shestakov, Zelmanov) A Kantor Dou- ble of a Jordan bracket is i-special. Assumption: J = ¡ + ¡x does not contain 6= (0) nilpo- tent ideals - If ¡ = ¡0¹ then J is special i® <; > is of vector ¯eld type. - If ¡1¹¡1¹ 6= (0) (at least 2 Grassmann variables) then J is exceptional. - If ¡ = ¡0¹ + ¡0¹»1; < ¡0¹;»1 >= (0); < »1;»1 >= ¡1 then J is special i® <; >:¡0¹ £ ¡0¹ ! ¡0¹ is of vector ¯eld type. Theorem. (M., Shestakov, Zelmanov) The Cheng-Kac superalgebra CK(Z; d) is special The embedding extends McCrimmon embedding for vector ¯eld type brackets. W =< R(a); a 2 Z; d > - di®erential operators on Z R = R0¹ + R1¹ = M4£4(W ) Let J be a special Jordan superalgebra. A specialization u : J ¡! U into an associative algebra U is said to be universal if U =< u(J) > and for an arbitrary specialization ' : J ! A there exists a homomorphism of associative algebras » : U ! A such that ' = » ¢ u. The algebra U is called the universal associative enveloping algebra of J. An arbitrary special Jordan superalgebra contains a unique universal specialization u : J ! U. U is equipped with a superinvolution * having all elements from u(J) ¯xed, i.e., u(J) ⊆ H(U; ¤). We call a special Jordan superalgebra reflexive if u(J) = H(U; ¤). (+) Theorem. U(Mm;n(F )) ' Mm;n(F ) © Mm;n(F ) for (m; n) 6= (1; 1); U(Q(+)(n)) = Q(n) © Q(n), n ¸ 2; U(osp(m; n)) ' Mm;n(F ), (m; n) 6= (1; 2); U(P (n)) ' Mn;n(F ), n ¸ 3. Theorem. The embedding σ of the Cheng-Kac super- » algebra is universal, that is, U(CK(Z; D)) = M2;2(W ). The restriction of the embedding u (see above) to P (2) is a universal specialization; U(P (2)) ' M2;2(F [t]), where F [t] is a polynomial algebra in one variable. The Jordan superalgebra of a superform Let V = V0¹+V1¹ be a Z=2Z-graded vector space, dim V0¹ = m; dimV1¹ = 2m; let <; >: V £ V ! F be a super- symmetric bilinear form on V . The universal associative enveloping algebra of the Jordan algebra F 1 + V0¹ is the Cli®ord algebra Cl(m) =< 1; e1; : : : ; emjeiej + ejei = 2 0; i 6= j; ei = 1 >. Consider the Weyl algebra Wn =< 1; xi; yi; 1 · i · nj[xi; yj] = ±ij; [xi; xj] = [yi; yj] = 0 >. Assuming xi; yi; 1 · i · n to be odd, we make Wn a superalgebra. The universal associative enveloping algebra of F 1+V is isomorphic to the (super)tensor product Cl(m) ­F Wn. Specializations of M1;1(F ) µ ¶ AM12 Theorem. U(M1;1(F )) ' . The map- M21 A ping µ ¶ µ ¶ ® ® ® ® + ® a¡1z u : 11 12 ! 11 12 21 2 ®21 ®22 ®12z1 + ®21a ®22 is a universal specialization. 2 Here a is root of the equation a +a¡z1z2 = 0, A = F [z1; z2]+F [z1; z2]a is a subring of K a quadratic exten- sion of F (z1; z2) generated by a and M12 = F [z1; z2] + ¡1 F [z1; z2]a z2, M21 = F [z1; z2]z1 + F [z1; z2]a are sub- spaces of K. Let V be a Jordan bimodule over the (super)algebra J V is a one-sided bimodule if fJ; V; Jg = (0). Then, the mapping a ! 2RV (a) 2 EndF V is a specialization. The category of one-sided bimodules over Jis equiv- alent to the category of right (left) U(J)-modules. Let e be the identity of J and let V = fe; V; eg + f1 ¡ e; V; eg + f1 ¡ e; V; 1 ¡ eg be the Peirce decomposition. Then fe; V; eg is a unital bimod- ule over J, that is, e is an identity of fe; V; eg + J.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us