The Laplace Transform of the Bessel Functions <Inlineequation ID="IE1

The Laplace Transform of the Bessel Functions <Inlineequation ID="IE1

The Laplace T,'ansform of the Bessel Functions where n ~ 1, 2, 3~ ... by F. M. RAhaB (a Cairo, Egitto - U.A.R.) (x) oo Summary. - The integrals / e--PtI(~ (1)xt~-n tl~--~dt and f e--pttk--iJ f 2a~t=~ni 1] di, n=l, 2, 3, .. o o are evaluated in term of MacRoberts' E--Functious and iu terms of generalized hyper. geometric functions. By talcing k~l, the Laplace transform of the four functions in the title is obtained. § 1. Introduction. - Nothing is known in the literature ([1] and [2]) of the Laplace transform of the functions where n is any posit.ire integer, except the case where the argument of the Bessel functions is equal to [~cti/2] (see [1] p. 185 and p. 199). In this paper the following four formulae, which give the Laplace transform of the above functions, will be established: / co 1 (1) e-Pttk--iKp xt dt=p--k2~--~(2u)~-'~x ~ o ](2n)2"p2]~_k nk ~ h n; : e :ei~ [~4x-~--]2 E A n; ~ + 2 , 2 2: (2n)~"p ~ 1 [[27~2n~2~ i . 1 E ~ n; 2 ~- , A n; 2 : 2: (2n)2"p 2 e:~ where R(k + U) ~ o, R{pI ~ o and n is any positive integer. The symbol h(n; a) represents the set of 318 F.M. RAGAB: The Laptace Tra.ns]orm o~ the Bessel Functions, etc. parameters o~ a+l a+n--1 8 (2~ e-ptt~-I xt dt = 2 k-~ r: o [ 1 1 1 ( 1 ) ( ~, 1 I, k, k+ h n; ~ h n ~, -~i ~ 2 )' ~ , ; --~. ~ ::4,~+:n2. e~ where R(k) > o, R(p) > o and n is any positive integer. The symbol A(n;~) has the same meaning as in (1) and the symbol Z means that to the expression following it a similar expression will --i instead of i is to be added ; oO 2V ~ 2Y 1 (3) 0 X=o k! l~(2v --{- ~, + 1) [n'nP" l k v+). k+l v+~. ~i.= 4a" , -- " e n2op 2 2+ n 2 + n ' -- ~F2.-: X+l k+n 5(n; 2v+l) where and n is any positive integer. The symbol A h~s the same meaning and • t . the asterisk denotes that the factor -m the set of parameters n X+I ),+2 X+n n n is omitted; I] v k --v---1 dt --p --k+-9,.~ 0 F. M. RAGAB: The Laplace Transform of the Bessel Fu, nctio~s, etc. 319 I p~ l~_~_ ~ +~k oF2,~+~ ; A n; 1+ --v A; n; 1-~ nk + v 2 ' 2 ' 2 ; 4(nx) 2ne±~n~ nk -t- n -k v] 3 p~e -~'~] oF~.+l[; ~(n;1 + .k +~2 -~)' A(,~; 1 + 2 ] '2;~J Y --V -}- p-~+ ~ m (__ 1)z2,Tn~z n I p2 iz_ z! v(v +)` + 1) ~" Y, ),+1 ),+n 1--k }_v-~2), 2--k v-~2)` ' oF2~+1 ; n n ' ~ - , ~ + - ,I "Pze~=inrc ] _ A(n; 1 + v + )`) : 4(nx)~ . where R (k--~ v) >o, R(p)>o and x is taken for simplicity to be real and positive. The function appearing on the right hand sides of (1)and (2) is MAcRoBER~'S. E function whose definitions and properties are to be found in (3} pp. 348-358. The symbol A and the asterisk have the previous meanings. These four formulae will be proved in § 3 by means of sub- sidiary theorems which will be stated an proved in § 2. In § 4 some known results and other new results will be derived as particular cases. The following formulae will be required in the proofs. ([4] p. 92, form. (7).) : (5~ f e-)')`~-lE ; ~,, : q ; ~ : ~ o) d), ----- 2 k-17:- 1 0 320 F. 5{. RAGAB: The Laplace Transform of the Bessel F,t~nctions, etc. 1 1 ~ p p i i i ] ~q (2~) ~-~" <~+P-q)+"-~ '~ ~- ~ P~÷ -~P-~ n-- i l • E (-- 1)x[4z-~n-"(~+q-p)]; k ~ k-lrl t 1 ,, p; h(n; a,.+X), 2+n 2 +n:4 z n"(~+q-V)e:~('+~)~ E ~.+--, 1 ......., --,X+n q; A(n; p~+~) n Tt where R(k)> o, p ~> q + 1 and n is any positive integer. For other values of p and q the formula holds provided that the integral is convergent. ([3], p. 352): if p--~q, then (6) E(p; a,.:q; p,:z)= F(p~)r(~)...]:(av) ... F(p~)~F" (p ; a,.: q; ~; _~zl) . ([3], p. 353): if p_>.q+l, then E(p ; ~ : q ; p~ : z) = Z; IIP'P (a, -- a,. )l lIv r(~t-- a,.) I-~ r(~Az% F (a,., a,.-p,+l, ..., a,.-- gq -}- l; (--1)p-qz) (7) \a,. -- a~ + l, ... ~ , a,.--a~+l ([3], p. 409): if p~q+l, then p E(p; a,.: q; p~ l z)-~--uP-q-lE [I sin (pt--a,.)u a,., ~ -- ;~ + ;q + 1: e~:~:(v-q-1)z t (8) I 1~' sin (a s-- ~,-)r:l-lE ( :or--al+ 1, ... * ..., a,,-- a~+l ([3], p. 411): (9) E(: v+l: z)=z~J~ (13), p. 154, ey. 5): F. ~. RAGAB: The Laplace Tra~tsform o] the Bessel F~a~wtion.s~ etc. 321 n-- 1 1 1 1 Also the followi.ng formulae are required: (11) r(z)t'(t -- z)= r~/sin ~z; k~ (k + 1)~ (k + n -- 1)7: (12) sin -- sin ... sin --- 21-n sin kr~ Tt ~ n (13) sin sin -- ... sin -- -- 21-'n Tt n ~ For the derivation of the particular cases, use will be made of the following formulae : F 2, =Vv i+ Tvc ) (14) can be obtained by differentiating the expansion 1 {l+Vl--zt--2b (15) F(b, b+ ~ ; 2b + 1; z) "-- t 2 t which can be extablished by means of LAC~nA~GE expansion, and then 1 putting b=~--l. ([5], p. 103, ex. (38)): (16) c(1--z)F(a, b; c; z) -- oF(a --1, b; c; z) ------(o--b)~F(a, b; c+ l; z) ([3]; p. 305); (17) P~'-v(z) "-- F(v + 1) ze-v~- ' 2 ' where P,-~(z) is the associated LEG]~I,~Dm~ finetion of the first kind. And the known transformation (18) F(a, b ; c; z) -- (1 -- z)C-'~-~'F(c -- a, o -- b; c; z) Annali dl Matematica 41 322 F. ~. RAGAB: The Laplace Tra~sform of the Bessel Fu~wtio~s, etc. § 2. - Subsidiary formulae - The thorems to be used are: ([6]; p. 304): 1 1 1 ~.\ i 9) K~,(~) = U=1 ~,E _~ f1E 1,~, 2g,::4me ) 1 (20) x -~ Z :E(p; ~+5~, ]: q; 9~+},: d~z) -- i, --i 1 E -:E(p; a,,, I:q; ;~: d "~z) i,--i (20) can be proved by expending each E--function on the left by means of (7) and combining the two resulting expressions by factoring out common terms applying (11). Ifp~q+l, lampz[ ~, Rk+-~-/( 2art>o, r:l, 2, 3, ..., p and n is any positive integer, then Oo -(91) e-lXk-~E p; oq~: q; ~,: zX~ dy= o i i p q I T i 1 - ~ ~+--~." + ~ (2.)(~-~')(~+~-°)~2 -~ ~'-~ ~'- ~-~+~. • k,., ~ (~) --/~;+~, v, ~(z) i where 1 (21') ~, p, q (z) ---~ cosec ~z ~k . .E A n; 1 +-~), .~, q; ~ '*k/ and 3 1 Rk +~. p, q (z) is k, .. q(z) F. ~¢[. RAGAB: The Laplace Transform of the Bessel Functio~s, etc. 323 3 i with (k + 1) instead of k and 2 instead of the 2 which appears in the last line of (21'). Also U"~, p, q(z) is given by ~, ~, q(z) = (-- 1) x cosec ~ -- n 7: cosec 2 7:" E ),.+1 k+n 1 k ), l k ), ~'"'*'"'~' 2 2+~-,' ~ + n, q; h(n; ~+k) Io (2[) the symbol h and the asterisk have the previous meanings. For other values of p and g (21) holds provided that the integral is convergent. Iv prove (21) consider the special case with p ~ 1 and q-- 0, a~= :¢, then the left side becomes co Go 2 z ~ e-Xk~:+~--lE a 0 0 2~ 1 ~--1 ~. -- z~F2 ~+ ~--~-~n ~-~ Z (-- 1)~(4z'*); ~.= 0 • * -- : - e=~(~+l) ~ _by 5. n ' 2 ~- n n n 4 z~ Now expand the last E-funtion by means of (8) taking in (8} a~ = = k a ), k+l ---:¢+)' and o~ t+~--no: +~k+t (t--0, 1, 2,..., n--l), ~ + ~ + n' ~ - 2 -~ n then the last expression becomes CG -~X~-IE ~ :: zX ~ d), -- z~2 k +~-1 ~?-n~-i o (22) ~, (-- 1)~(4z')~ A k Ak+~,~'~ x(z) ).------ 0 2_~ 1 3 ¢$ -- 1 ~--I + z~2 k+ ,~ r:~n~-~ ~ v, Bx", t(z). where sin + ~ t e:~i~(n+~)~-" ~ + A ~' ~(z) = It=o n 2 n n -- 1 '* sic(1 1sin -- +~s)l ~ sin , 2 n s=o 324 F.M. R~GAu: The Laplace Truns]orm of the Bessel Fur~ctio~s, etc. k ik .+~ k ~--1 , - : e-~(n+l)ni4Zn 2+ n '2 4 n r-~, ... ~+ n E ~1 k 1 k I ~, l+~,'"*'",nq- ~ 8 3 and A"'~ (z) is the value of A~',~(z) with k -+- 1 instead of k and ~ instead k+l,~. of the ].1 Also B"~,t(z) is given by ... B~", t(~) = (-- 1)t+:' t=o n n 4 sin I t+n ;~ +e~: .--IIsin--n --n ~sin 2 [ ~-]--- k -]- t, c¢ + t--1 +1,...*..., :¢ + t': e~=(,+~).i4z. n n E t k 1 t k t+l t+n J._ l*n 2' 2--n 2' n ' ' n Here apply (11) and (12) to substitute for each sine product in (22). The n~ 8_ asterisks in the three E-functions appearing in Ak;~(z), A;'g:,x(z) and Bz~,t(z) denote that the three parameters k ~.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us