Exoplanet Detection with Radial Velocities

Exoplanet Detection with Radial Velocities

Astronomical Data Analysis 2011: Lecture 6 Exoplanet Detection with Radial Velocities Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection Exoplanet Detection Rate Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection Outline 1. Introduction 2. Radial Velocity Detection 3. Exoplanet Properties from Radial Velocities 4. Transits 5. Exoplanet Atmospheres 6. The Future Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 3 What is a Planet? www.solarviews.org/cap/misc/solarsystem.htm • <13 Jupiter masses (no nuclear fusion), orbits star • Same for exoplanets and solar system planets • Earth-like: Earth-mass, -density, -temperature Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection Planet vs. Star Jupiter Brown Dwarf Sun Solar 0.1 0.2 1 Diameters Jupiter 1 55 1000 Masses Convection partial full outer 30% Fusion none deuterium hydrogen Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 5 Detection vs. Characterization Detection: • Detect presence of exoplanet around a star • Determine mass to distinguish from brown dwarfs • Determine orbit around star Characterization: • Determine radius • Determine surface properties • Determine atmosphere properties Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 6 Main Exoplanet Detection Methods • Radial velocity (stellar wobble): • period • semi-major axis • eccentricity • lower limit to mass • Transits (stellar occultation): • period • semi-major axis • inclination • radius • planet temperature • planet atmosphere Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 8 Spectral Lines in the Solar Spectrum www.noao.edu/image_gallery/images/d5/suny.jpg Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 9 Radial Velocity • Star, planet move around common center of mass • Doppler effect moves spectral lines • Look for periodic variations in stellar velocity Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection Radial Velocity Signal Semi-amplitude of radial velocity given by 1 3 2πG MP sin i 1 K = 2 P 3 √ 2 orb (M + MP ) 1 e ! " ∗ − • Porb: orbital period • M*: mass of star • MP: mass of planet • i: inclination, angle between normal to orbital plane and line of sight • e: excentricity Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 11 Radial Velocity Signal For circular orbits with MP << M* in meter/second: MP sin i vobs = 28.4 1/3 2/3 P M orb ∗ • MP in Jupiter masses • Porb in years • M* in solar masses Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 12 Radial Velocity Signal Amplitude 1 3 2πG MP sin i 1 K = 2 P 3 √ 2 orb (M + MP ) 1 e ! " ∗ − • Observe: period, velocity amplitude and shape • Stellar mass unknown, but good estimate from stellar spectrum • Jupiter: 12.4 m/s maximum velocity • Saturn: 2.8 m/s • Earth: 9 cm/s • Heavier stars reduce the signal • Lighter stars increase the signal Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 13 Spectrometer en.wikipedia.org/wiki/Extrasolar_planet • Wavelength cannot be measured directly • Spectrograph transforms wavelength into position information • Must measure spatial location of spectral lines Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 14 Positional Stability Requirement • Visible spectrum: ~ 500 nm • Typical high-resolution spectrograph: 0.005 nm per camera pixel • One pixel in velocity: 3*108m/s/105 = 3000 m/s • Typical CCD camera pixel size: 15 μm • 1 m/s is 15000/3000 nm = 5 nm • Need to keep this stability over years • 1-meter aluminum bar expands 24 μm per deg C Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 15 HARPS obswww.unige.ch/Instruments/Harps/ gallery/Integration_LSO/ • Velocity noise 0.7 - 2 m/s over many years • Thorium-Argon calibration source simultaneous with stellar spectrum Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 16 HARPS Polarimeter Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 17 Example 1: 51 Pegasi b Mayor and Queloz 1995 Figure 4 Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 18 Example 2: e=0 Butler et al. 2006, ApJ, 646, 505 Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 19 Example 3: e=0.5 Butler et al. 2006, ApJ, 646, 505 Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 20 Multiple Planets: One-Planet Fit exoplanets.org/esp/55cnc/55cnc.shtml Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 21 Multiple Planets: Two-Planet Fit exoplanets.org/esp/55cnc/55cnc.shtml Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 22 Multiple Planets: Three-Planet Fit exoplanets.org/esp/55cnc/55cnc.shtml Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 23 Radial Velocity Observables • Period • Lower limit to mass: (MP sin i) • Eccentricity of orbit Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 24 Problems with Radial velocity • Correction of earth orbital motion (up to 30 km/s) and earth rotation (0.5 km/s) • Period analysis (see Lecture on Periodicity) • Only good for cool stars such as the Sun • Hot stars (O,B,A) do not have enough narrow, spectral lines • Stellar rotation, starspots, oscillations, convection impact Doppler signal Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 25 Radial Velocity Limits MP sin i vobs = 28.4 P 1/3M 2/3 orb ∗ rd 1/3 1/2 1/6 • Kepler’s 3 law: Porb ~ a /M* 1/2 • Limit given by MP sin i ~ a • Need to observe at least one full orbit • Detection limit proportional to a1/2 Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 26 Problems with Statistics • Selection effects: • some aspects of observed distributions are inconsistent with real population of exoplanets • depend on exoplanet detection approach • Mass is mostly a lower limit to real mass Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 27 Exoplanet Orbital Distances Compared to Earth and Mercury Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection Exoplanet Masses & Lower Limits Compared to Jupiter and Earth Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection Mass Distribution Interpretation • Low end of mass distribution: • Heavily affected by selection • low-mass planets induce small velocity variations, difficult to detect, underrepresented • High end of mass distribution: • Massive planets easier to detect • Apparent decrease for M > 3MJ real • Apparent decrease for M >12MJ real, ‘‘brown dwarf desert’’ Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 30 Exoplanet Masses and Orbits Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection Exoplanet Eccentricities Mercury Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 32 Eccentricity • Exoplanets within 0.1 AU on nearly circular orbits • Beyond 0.3 AU, distribution of eccentricities is essentially uniform between 0 and 0.8 • Radial velocity survey sensitivity not a strong function of eccentricity for 0 < e < 0.7 and a < 3 AU Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 33 Eccentricity Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 34 Distance vs. Eccentricity Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 35 Orbital Eccentricity Interpretation • Overestimation of eccentricity because of e > 0 • Probably 30-40% have e < 0.05 • For a<0.1 mostly circular orbits due to tidal circularization • Large eccentricities for more distant exoplanets may be due to • Perturbations by other planets • Resonances • Interactions with protoplanetary disk • No clear correlation between eccentricity and mass • But high-mass exoplanets (M sin i > 5MJ) have higher median eccentricity than lower mass exoplanets Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 36 Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 37 Transits • Can use small telescopes (<1 m diameter) • Space missions avoid problems with Earth’s atmosphere • Transit timing variations may reveal hidden exoplanets sci.esa.int/science-e/www/object/index.cfm?fobjectid=35225 Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 38 Mercury Transit 8 November 2006 sohowww.nascom.nasa.gov/hotshots/2006_11_06/ Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection Transit of Kepler 10b 0.017% kepler.nasa.gov/Mission/discoveries/kepler10b/ Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 40 Transit Signals • Intensity signal ∆I R 2 R* = P I R ! ∗ " RP • R* stellar radius • Rp planet radius • About 1% for Jupiter and Sun 1/3 1/3 • Transit duration proportional to Porb R*/M* • Transit duration: also estimate of stellar radius • Intensity change then provides planetary radius Christoph U. Keller, [email protected] Astronomical Data Analysis 2011: Exoplanet Detection 41 Transit Observables • Period • Orbit inclination (i≈90°) • Planet radius • Planet temperature from secondary eclipse • Stellar limb darkening • Good for large planets close to the star Christoph U.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    77 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us