
Extension of radiolytic procedure to the preparation of conducting polymers in organic solvents : synthesis, characterization and applications Teseer Bahry To cite this version: Teseer Bahry. Extension of radiolytic procedure to the preparation of conducting polymers in organic solvents : synthesis, characterization and applications. Polymers. Université Paris Saclay (COmUE), 2019. English. NNT : 2019SACLS328. tel-02372268 HAL Id: tel-02372268 https://tel.archives-ouvertes.fr/tel-02372268 Submitted on 20 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Extension of radiolytic procedure to the preparation of conducting polymers in organic solvents: synthesis, characterization and applications 2019SACLS328 : NNT Thèse de doctorat de l'Université Paris-Saclay préparée à l'Université Paris Sud ECOLE DOCTORALE N° 571 Sciences chimiques : molécules, matériaux, instrumentation et biosystèmes (2MIB) Spécialité de doctorat: Chimie Thèse présentée et soutenue à Orsay, le 18 Octobre 2019, par Teseer Bahry Composition du Jury : Mr Fabien Miomandre Professeur, ENS Saclay Président du jury Mr Jean-Marc Jung Professeur, Université de Strasbourg Rapporteur Mme Ngono-Ravache Yvette Cadre scientifique des EPIC, CEA GANIL Rapporteur Mme Rachel Méallet-Renault Professeur, Université Paris-Saclay Examinatrice Mme Muriel Ferry Cadre scientifique des EPIC, CEA Saclay Examinatrice Mme Najla Fourati-Ennouri Maître de Conférences, CNAM et SATIE Examinatrice Mr Thanh-Tuän Bui Maître de Conférences, Université de Cergy-Pontoise Examinateur Mr Samy Remita Professeur, Université Paris-Saclay et CNAM Directeur de thèse Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France Acknowledgment This thesis would not have been possible without the inspiration and support of a number of wonderful individuals in Laboratoire de Chimie Physique (LCP) in Université Paris-Sud- my thanks and appreciation to all of them for being part of this journey and making this thesis possible. First and foremost, I owe my deepest gratitude to my supervisor Prof. Samy Remita. Without his enthusiasm, encouragement, support and continuous optimism this thesis would hardly have been completed. His meticulous and precious guidance were an enormous help to me. I am profoundly honored to work with him. I take pride in acknowledging the insightful guidance of my external supervisors Prof. Thanh-Tuân BUI and Prof. Laure Catala who followed up the advancement of this thesis. Their guidance and precious comments has been a valuable input for this thesis. I am thankful to Prof. Philippe Maître as the director of LCP for his kind help. My deepest heartfelt appreciation goes to Prof. Mehran Mostafavi for support and encouragement. I am particularly grateful for the assistance given by Mireille Benoit and Alexandre Demarque during the experiments. Many thanks to Prof. Fabrice G oubard, and Prof. Pierre Henri Aubert for the warm welcoming and for allowing me to perform the photovoltaics experiments in Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI) of University of Cergy Pontoise. My sincere thanks also go to all the cooperators Alexandre Dazzi, Ariane Deniset-Besseau for, Matthieu Gervais, Cyrille Sollogoub, Jean-Michel Guigner. I have greatly benefited from them. I express my warmest gratitude to Prof. Nabil JOUDIEH at Damascus University. I am deeply indebted and grateful to his help, support and encouragement. I would also like to express my gratitude to Ministry of Higher Education, Research and Innovation for their financial support. Finally, my deep and sincere gratitude to my family for their continuous and unparalleled love, help and support. I am forever indebted to my parents for giving me the opportunities and experiences that have made me who I am. They selflessly encouraged me to explore new directions in life and seek my own destiny. This journey would not have been possible if not for them, and I dedicate this milestone to them. I am forever thankful to my colleagues at LCP for their friendship and support, and for creating a cordial working environment. I would never forget all the beautiful moments I shared with them: my dearest friends Iyad, Iskander, Zhenpeng, Sarah, Vjona, Ali, Shiraz and also my lab mates also Slava, Xiaojiao, Cong, Benazir. Abbreviations and Acronyms 3HT 3-hxylthiophene ATR-FTIR attenuated total reflection fourier transform infrared spectroscopy CPs conducting polymers Cryo-TEM cryogenic-transmission electron microscopy CV cyclic voltammetry D dose DCM dichloromethane EDOT 3,4-ethylenedioxythiophene EDX energy dispersive X-Ray spectroscopy G radiolytic yield Gy gray IPV Inorganic photovoltaic cells OPV organic photovoltaic cells P3HT poly (3-hxylthiophene) PEDOT poly(3,4-ethylenedioxythiophene) PPy polypyrrole PSC perovskite solar cells PTAA poly (3-thiophene acetic acid) PV photovoltaic cells Py pyrrole SEC size exclusion chromatography SEM scanning electron microscopy SHE standard hydrogen electrode TAA 3-thiophene acetic acid TGA thermogravimetric analysis UV-vis ultraviolet-visible XRD x-ray powder diffraction ε molar extinction coefficient Table of Contents Table of Contents Introduction to the research interest ................................................................................................................... 1 1 Conducting polymers (CPs) ........................................................................................................................... 2 1.1 Brief background ................................................................................................................................... 2 1.2 Types of CPs .......................................................................................................................................... 3 1.3 The Principle of electrical conductivity ................................................................................................. 4 1.3.1 Energy band gap theory ................................................................................................................ 5 1.3.2 Direct and indirect band gap ......................................................................................................... 7 1.3.3 Optical and electronic band gap .................................................................................................... 7 1.3.4 Determination of energy band gap ................................................................................................ 8 1.4 Doping of CPs ..................................................................................................................................... 10 1.5 Applications ......................................................................................................................................... 11 1.6 Potential synthesis methods ................................................................................................................. 12 2 Objective of the work ................................................................................................................................... 14 References ............................................................................................................................................................. 17 Chapter 1 Materials, instruments and synthesis methodologies ..................................................................... 26 1.1. Chemicals ................................................................................................................................................. 27 1.1.1. Monomers ....................................................................................................................................... 27 1.1.2. Solvents and reagents ...................................................................................................................... 31 1.2. Gamma-irradiation and radiolytic routes ................................................................................................. 32 1.2.1. The irradiation platform: Cobalt 60 (60Co) as source of -rays ....................................................... 32 1.2.2. Water radiolysis............................................................................................................................... 34 1.2.2.1. Radiolysis of aqueous solutions under different atmospheres and environmental conditions 38 a. Radiolysis of aerated aqueous solutions .............................................................................................. 38 b. Radiolysis under N2O .......................................................................................................................... 39 c. Radiolysis under N2O in presence of NaN3 ......................................................................................... 39 d. Radiolysis under N2O at pH 0 ............................................................................................................. 40 e. Radiolysis under N2
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages260 Page
-
File Size-