John Von Neumann

John Von Neumann

1 2 1 1 n ¨1 ¨2 2 3 a, a(a≧a) 4 1 n (Turing Machine) 1936Alan Turing Alan Turing 1912-1954 Σ: K: • •Σ •K • • 5 2 RAM (Random Access Machine) () ¨ ¨ ¨ 6 M=(K,Σ,δ,s) K s∈K Σ K∩Σ=`␣’`’ `␣’ `␣’ δKΣ → K∪{h,``yes’’,``no’’})Σ{←,→,}, h: halting state () yes: accepting state ( no: rejecting state ( ←: →: : δ(q, )=(p, ,→) 7 01 M=(K,Σ,δ,s), K={s,q,q0,q1}, Σ={0,1, ␣,} δ(s,0)=(s,0,→) δ(s,1)=(s,1,→) δ(s, ␣)=(q, ␣,←) 010 010 010 010 δ(s, )=(s, ,→) s s s s δ(q,0)=(q0, ␣,→) δ(q,1)=(q , ␣,→) 1 010␣ 010␣ 01␣␣ 01␣0 δ(q, ␣)=(q, ␣,) δ(q, )=(h, ,→) s q q0 s δ(q0,0)=(s,0,←) δ(q0,1)=(s,0,←) 01␣0 0␣␣0 0␣10 0␣10 δ(q0, ␣)=(s,0,←) q q1 s q δ(q0, )=(h, ␣,→) δ(q1,0)=(s,1,←) 10 010 010 010 δ(q1,1)=(s,1,←) ␣␣ ␣ ␣ ␣ δ(q , )=(s,1,←) 1 ␣ q0 s q h δ(q1, )=(h, ␣,→) 8 Σ*Σ def Σ*f ⇔ x∈Σ* Mxf(x) M δKΣk → K∪{h,``yes’’,``no’’})Σk{←,→,}k δKΣ → 2K∪{h,``yes’’,``no’’})Σ{←,→,} 2XXX 9 ChurchChurch-Turing)(1936) Alonzo Church, 1903-1995, f ⇔ fλ ⇔ f Gödel Church Turing Church, Kleene Turing λ (λ) 10 • →YES • Mp Mp x(p,x)Mx 11 Mpx(p,x) Mx halt halt(p,x)= 1 if p x 0 otherwise halt 12 halt halt haltM M Mp if(halt(u,u)=1) { while(true){ u←u;} M(u=)p } else { ⇒halt(p,p)=1 return(0); ⇒Mp } () M(u=p) ⇒halt(p,p)=0 ⇒Mp halt 13 14 1966(ACM) 2007 Edmund M. ClarKe 2003 Alan Kay E. Allen EmersonJoseph Sifakis LSI 2004 Vinton G. Cerf Robert E. Kahn TCP/IP 2005 Peter Naur Algol 60 2008 Barbara LisKov() 2006 Frances E Allen ( CLUArgus 2010 Leslie G. Valiant 2009 Charles P. ThacKer 2011 Judea Pearl Alto PC 2012 Silvio Micali, Shafi Goldwasser 2013 Leslie Lamport URL: https://amturing.acm.org/byyear.cfm 2014 Michael StonebraKer 2015 Whitfield Diffie, Martin Hellman 2016 Berners-Lee, Tim World Wide Web (WWW) 2017 John L. Hennessy, David Patterson 2018 Yoshua Bengio, Geoffrey E Hinton, Yann LeCun 2019 Edwin E. Catmull (*1), PatricK M. Hanrahan (CG)15 (*1 ACM EATCS 5,000 2 Kurt Gödel, 2004 Maurice Herlihy, Michael Saks, Nir Shavit and Fotios Zaharoglou: applications of topology to the theory of distributed computing 1906-1978, 2005 Noga Alon, Yossi Matias and Mario Szegedy: their foundational contribution to streaming algorithms 2006 Manindra Agrawal, Neeraj Kayal, Nitin Saxena: the AKS primality test 2007 Alexander Razborov, Steven Rudich: natural proofs 2008 Daniel Spielman, Shanghua Teng: smoothed analysis of algorithms 2009 Omer Reingold, Salil Vadhan, Avi Wigderson: zig-zag product of graphs and undirected connectivity in log space 2010 Sanjeev Arora, Joseph S. B. Mitchell: their concurrent discovery of a polynomial-time approximation scheme (PTAS) for the Euclidean Travelling Salesman Problem (ETSP) 2011 Johan Håstad: proving optimal inapproximability result for various combinatorial problems 2012 Elias Koutsoupias, Christos Papadimitriou, Noam Nisan, Amir Ronen, Tim Roughgarden and Éva Tardos: laying the foundations of algorithmic game theory 2013 Dan Boneh, Matthew K. Franklin, and Antoine Joux: for multi-party Diffie–Hellman key exchange and the Boneh–Franklin scheme in cryptography 2014 Ronald Fagin, Amnon Lotem, and Moni Naor: for Optimal Aggregation Algorithms for Middleware 2015 Daniel Spielman, Shanghua Teng or their series of papers on nearly-linear-time Laplacian solvers #P1998 16 Fields Medal(1936-)Carl Friedrich Gauss Prize(2006-) 4 40 15,000IMU) Rolf Nevanlinna, 1895-1980, Year Laureate Nationality 1982 Robert Tarjan United States 1986 Leslie Valiant United Kingdom 1990 Alexander Razborov Russia 1994 Avi Wigderson Israel 1998 Peter Shor United States 2002 Madhu Sudan India/ United States 2006 Jon Kleinberg United States 2010 Daniel Spielman United States 2014 Subhash Khot india/ United States John von Neumann (1992-) 4000 (IEEE) 1990 3von Neumann 17.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us