
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Χ t it 3 November 20ll (03.ll.20ll) 2U11/135459 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every CI2Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/IB20 11/001405 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 29 April 201 1 (29.04.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2010 00382 29 April 2010 (29.04.2010) DK Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): MEDI¬ GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, CAL PROGNOSIS INSTITUTE A S [DK/DK]; Ven- ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, lighedsvej l , DK-2970 Horsholm (DK). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (72) Inventor; and LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (75) Inventor/Applicant (for US only): KNUDSEN, Steen SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, [DK/DK]; Furesoebakken 6, DK-3460 Birkroed (DK). GW, ML, MR, NE, SN, TD, TG). (74) Agents: ISENBRUCK BOSL HORCHLER LLP et al; Published: Dr. Fritz Lahrtz, Prinzegentenstrasse 68, 81675 Munchen (DE). without international search report and to be republished upon receipt of that report (Rule 48.2(g)) < o (54) Title: METHODS AND DEVICES FOR PREDICTING TREATMENT EFFICACY (57) Abstract: The present invention features methods, devices, and kits for predicting the sensitivity of a patient to a compound or medical treatment. The invention also features methods for identifying biomarkers, the expression of which correlates to treat ment sensitivity or resistance within a patient population or subpopulation. METHODS AND DEVICES FOR PREDICTING TREATMENT EFFICACY FIELD OF THE INVENTION The invention features the use of biomarkers in methods and devices to predict the sensitivity of a patient to a medical treatment, e.g., a chemotherapeutic agent. BACKGROUND OF THE INVENTION DNA microarrays have been used to measure gene expression in tumor samples from patients and to facilitate diagnosis. Gene expression can reveal the presence of cancer in a patient, its type, stage, and origin, and whether genetic mutations are involved. Gene expression may even have a role in predicting the efficacy of chemotherapy. Over recent decades, the National Cancer Institute (NCI) has tested compounds, including chemotherapy agents, for their effect in limiting the growth of 60 human cancer cell lines. The NCI has also measured gene expression in those 60 cancer cell lines using DNA microarrays. Various studies have explored the relationship between gene expression and compound effect using the NCI datasets. During chemotherapy for cancers critical time is often lost due to a trial and error approach to finding an effective therapy. In addition, cancer cells often develop resistance to a previously effective therapy. In such situations, patient outcome would be greatly improved by early detection of such resistance. There remains a need for proven methods and devices that predict the sensitivity or resistance of cancer patients to a medical treatment. SUMMARY OF THE INVENTION The invention features methods and devices for predicting the sensitivity or resistance of a patient, e.g., a cancer patient, to a treatment, e.g., treatment with a compound, such as a chemotherapeutic agent, or radiation. In particular, the methods and devices can be used to predict the sensitivity or resistance of a cancer patient to any medical treatment, including, e.g., treatment with a compound, drug, or radiation. The devices and methods of the invention have been used to accurately predict treatment efficacy in cancer patients (e.g., patients with lung, lymphoma, and brain cancer) and can be used to predict treatment efficacy in patients diagnosed with any cancer. In a first aspect, the invention features a method of predicting sensitivity of a cancer patient to a treatment for cancer by determining the expression level of at least one gene or noncoding RNA (e.g. microRNA (miRNA), such as hsa-miR-766 st) in a cell (e.g., a cancer cell) of the patient in which the level of expression of the gene and/or RNA (e.g., miRNA) indicates the patient is sensitive or resistant to at least one treatment for cancer. In an embodiment, the method involves assaying for the level of expression of one or more (e.g., two, three, four, five, ten, twenty, thirty, forty, or fifty or more) biomarkers from one or more of Tables 1-65 and/or one or more of Tables 66- 129) in a patient. For example, the method includes assaying the level of expression of hsa-miR-766_st in a biological sample from the patient (e.g., a cell, tissue, or organ sample from a patient) or in a sample prepared from a biological sample from the patient. In another embodiment, the method includes assaying the level of expression of at least hsa-miR-766_st (alone or in combination with one or more (e.g., two, three, four, or more) of the biomarkers listed in one or more of Tables 1-65 and/or one or more of the biomarkers listed in one or more of Tables 66-129). In an embodiment, the method includes determining the expression level of two of the listed biomarkers, more preferably three, four, five, six, seven, eight, nine, or ten of the listed biomarkers, and most preferably twenty, thirty, forty, fifty, sixty, seventy, eighty, ninety, or one hundred or more of the listed biomarkers. In another embodiment, the change in the level of biomarker expression (e.g., an increase or decrease) is determined relative to the level of biomarker expression in a cell or tissue known to be sensitive to the treatment, such that a similar level of biomarker expression exhibited by a cell or tissue of the patient indicates the patient is sensitive to the treatment. In another embodiment, the change in the level of biomarker expression (e.g., an increase or decrease) is determined relative to the level of biomarker expression in a cell or tissue known to be resistant to the treatment, such that a similar level of biomarker expression exhibited by a cell or tissue of the patient indicates the patient is resistant to the treatment. A second aspect of the invention features a method for determining the development of resistance by a patient (i.e., a cell, such as a cancer cell, in the patient) to a treatment that the patient was previously sensitive to. The method includes determining the level of expression of one or more of the biomarkers set forth in the first aspect of the invention, such that the expression level of a biomarker(s) which is decreased in a cell or tissue known to be sensitive to the treatment indicates that the patient is resistant to or has a propensity to become resistant to the treatment. Alternatively, a decrease in the expression level of a biomarker(s) which is increased in a cell or tissue known to be sensitive to the treatment indicates that the patient is resistant to or has a propensity to become resistant to the treatment. A third aspect of the invention features devices for assaying the level of expression of one or more biomarkers described herein (e.g., one or more of the biomarkers listed in Tables 1- 9, e.g., at least hsa-miR-766_st (alone or in combination with one or more (e.g., two, three, four, five, ten, twenty, thirty, forty, or fifty or more) additional biomarkers from one or more of Tables 1-65 and/or one or more of Tables 66-129)) in a patient; the devices include probes capable of hybridizing to the biomarkers. For example, the method includes assaying the level of expression of hsa-miR-766_st in a biological sample from the patient (e.g., a cell, tissue, or organ sample from a patient) or in a sample prepared from a biological sample from the patient. In an embodiment, the method can be used to determine the sensitivity of a patient to at least one treatment for cancer (e.g,. a chemotherapy drug, such as vincristine, cisplatin, etoposide, azaguanine, carboplatin, adriamycin, aclarubicin, mitoxantrone, mitoxantrone, mitomycin, paclitaxel, gemcitabine, taxotere, dexamethasone, ara-c, methylprednisolone, methotrexate, bleomycin, methyl-gag, belinostat, carboplatin, 5-fu (5-fluorouracil), idarubicin, melphalan, 1L4- PR38, valproic acid, all-trans retinoic acid (ATRA), Cytoxan, topotecan, suberoylanilide hydroxamic acid (SAHA, vorinostat), depsipeptide (FR901228), bortezomib, leukeran, fludarabine, vinblastine, busulfan, dacarbazine, oxaliplatin, hydroxyurea, tegafur, daunorubicin, estramustine, mechlorethamine, streptozocin, carmustine, lomustine, mercaptopurine, teniposide, dactinomycin, tretinoin, ifosfamide, tamoxifen, irinotecan, floxuridine, thioguanine, PSC 833, erlotinib, herceptin, celecoxib, fulvestrant, iressa, anastrozole, letrozole, cetuximab, rituximab, radiation, histone deacetylase (HDAC) inhibitors, and/or 5-Aza-2'-deoxycytidine (decitabine)).
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages169 Page
-
File Size-