Advances in the Detection of Malicious Servers and the Analysis of Client-Side Vulnerabilities

Advances in the Detection of Malicious Servers and the Analysis of Client-Side Vulnerabilities

UNIVERSIDAD POLITECNICA´ DE MADRID ESCUELA TECNICA´ SUPERIOR DE INGENIEROS INFORMATICOS´ Defending Against Cybercrime: Advances in the Detection of Malicious Servers and the Analysis of Client-Side Vulnerabilities PH.D THESIS Antonio Nappa Copyright c February 2016 by Antonio Nappa DEPARTAMENTAMENTO DE LENGUAJES Y SISTEMAS INFORMATICOS´ E INGENIERIA DE SOFTWARE ESCUELA TECNICA´ SUPERIOR DE INGENIEROS INFORMATICOS´ Defending Against Cybercrime: Advances in the Detection of Malicious Servers and the Analysis of Client-Side Vulnerabilities SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF: Doctor en Inform´atica Author: Antonio Nappa Advisor Dr. Juan Caballero February 2016 Jury: Somesh Jha, Professor of Computer Sciences - University of Wisconsin-Madison Lorenzo Cavallaro, Senior Lecturer of Computer Sciences - Royal Holloway University of London Juan Manuel Est´evez Tapiador, Profesor Titular de Universidad - Universi- dad Carlos III de Madrid Victor A. Villagr´a, Profesor Titular de Universidad - Universidad Polit´ecnica de Madrid Boris K¨opf, Assistant Research Professor - IMDEA Software Institute Carmela Troncoso, Researcher - IMDEA Software Institute Manuel Carro, Profesor Titular de Universidad - Universidad Polit´ecnica de Madrid Resumen de la tesis Esta tesis se centra en el an´alisisde dos aspectos complementarios de la ciberdelin- cuencia (es decir, el crimen perpetrado a trav´esde la red para ganar dinero). Estos dos aspectos son las m´aquinasinfectadas utilizadas para obtener beneficios econ´omicosde la delincuencia a trav´esde diferentes acciones (como por ejemplo, clickfraud, DDoS, correo no deseado) y la infraestructura de servidores utiliza- dos para gestionar estas m´aquinas(por ejemplo, C & C, servidores explotadores, servidores de monetizaci´on,redirectores). En la primera parte se investiga la exposici´ona las amenazas de los orde- nadores victimas. Para realizar este an´alisishemos utilizado los metadatos con- tenidos en WINE-BR conjunto de datos de Symantec. Este conjunto de datos contiene metadatos de instalaci´onde ficheros ejecutables (por ejemplo, hash del fichero, su editor, fecha de instalaci´on,nombre del fichero, la versi´ondel fichero) proveniente de 8,4 millones de usuarios de Windows. Hemos asociado estos metadatos con las vulnerabilidades en el National Vulnerability Database (NVD) y en el Opens Sourced Vulnerability Database (OSVDB) con el fin de realizar un seguimiento de la decadencia de la vulnerabilidad en el tiempo y observar la rapidez de los usuarios a remiendar sus sistemas y, por tanto, su exposici´ona posibles ataques. Hemos identificado 3 factores que pueden influir en la actividad de parches de ordenadores victimas: c´odigocompartido, el tipo de usuario, exploits. Pre- sentamos 2 nuevos ataques contra el c´odigocompartido y un an´alisisde c´omoel conocimiento usuarios y la disponibilidad de exploit influyen en la actividad de aplicaci´onde parches. Para las 80 vulnerabilidades en nuestra base de datos que afectan c´odigocompartido entre dos aplicaciones, el tiempo entre el parche libera en las diferentes aplicaciones es hasta 118 das (con una mediana de 11 das) En la segunda parte se proponen nuevas t´ecnicasde sondeo activos para de- tectar y analizar las infraestructuras de servidores maliciosos. Aprovechamos t´ecnicasde sondaje activo, para detectar servidores maliciosos en el internet. ii Empezamos con el an´alisisy la detecci´onde operaciones de servidores explota- dores. Como una operaci´onidentificamos los servidores que son controlados por las mismas personas y, posiblemente, participan en la misma campaa de infecci´on. Hemos analizado un total de 500 servidores explotadores durante un perodo de 1 ao, donde 2/3 de las operaciones tenian un nico servidor y 1/2 por varios servi- dores. Hemos desarrollado la t´ecnicapara detectar servidores explotadores a difer- entes tipologas de servidores, (por ejemplo, C & C, servidores de monetizaci´on, redirectores) y hemos logrado escala de Internet de sondeo para las distintas cat- egoras de servidores maliciosos. Estas nuevas t´ecnicas se han incorporado en una nueva herramienta llamada CyberProbe. Para detectar estos servidores hemos desarrollado una novedosa t´ecnicallamada Adversarial Fingerprint Generation, que es una metodologa para generar un modelo nico de solicitud-respuesta para identificar la familia de servidores (es decir, el tipo y la operaci´onque el servidor apartenece). A partir de una fichero de malware y un servidor activo de una determinada familia, CyberProbe puede generar un fingerprint v´alidopara de- tectar todos los servidores vivos de esa familia. Hemos realizado 11 exploraciones en todo el Internet detectando 151 servidores maliciosos, de estos 151 servidores 75% son desconocidos a bases de datos publicas de servidores maliciosos. Otra cuesti´onque se plantea mientras se hace la detecci´onde servidores mali- ciosos es que algunos de estos servidores podran estar ocultos detr´asde un proxy inverso silente. Para identificar la prevalencia de esta configuraci´onde red y mejorar el capacidades de CyberProbe hemos desarrollado RevProbe una nueva herramienta a traves del aprovechamiento de leakages en la configuraci´onde la Web proxies inversa puede detectar proxies inversos. RevProbe identifica que el 16% de direcciones IP maliciosas activas analizadas corresponden a proxies inver- sos, que el 92% de ellos son silenciosos en comparaci´oncon 55% para los proxies inversos benignos, y que son utilizado principalmente para equilibrio de carga a trav´esde mltiples servidores. iii Abstract of the dissertation In this dissertation we investigate two fundamental aspects of cybercrime: the infection of machines used to monetize the crime and the malicious server infras- tructures that are used to manage the infected machines. In the first part of this dissertation, we analyze how fast software vendors ap- ply patches to secure client applications, identifying shared code as an important factor in patch deployment. Shared code is code present in multiple programs. When a vulnerability affects shared code the usual linear vulnerability life cycle is not anymore effective to describe how the patch deployment takes place. In this work we show which are the consequences of shared code vulnerabilities and we demonstrate two novel attacks that can be used to exploit this condition. In the second part of this dissertation we analyze malicious server infrastruc- tures, our contributions are: a technique to cluster exploit server operations, a tool named CyberProbe to perform large scale detection of different malicious servers categories, and RevProbe a tool that detects silent reverse proxies. We start by identifying exploit server operations, that are, exploit servers managed by the same people. We investigate a total of 500 exploit servers over a period of more 13 months. We have collected malware from these servers and all the metadata related to the communication with the servers. Thanks to this metadata we have extracted different features to group together servers managed by the same entity (i.e., exploit server operation), we have discovered that 2/3 of the operations have a single server while 1/3 have multiple servers. Next, we present CyberProbe a tool that detects different malicious server types through a novel technique called adversarial fingerprint generation (AFG). The idea behind CyberProbe's AFG is to run some piece of malware and observe its network communication towards malicious servers. Then it replays this communication to the malicious server and outputs a fingerprint (i.e. a port selection function, a probe generation function and a signature generation function). iv Once the fingerprint is generated CyberProbe scans the Internet with the fingerprint and finds all the servers of a given family. We have performed a total of 11 Internet wide scans finding 151 new servers starting with 15 seed servers. This gives to CyberProbe a 10 times amplification factor. Moreover we have compared CyberProbe with existing blacklists on the internet finding that only 40% of the server detected by CyberProbe were listed. To enhance the capabilities of CyberProbe we have developed RevProbe, a reverse proxy detection tool that can be integrated with CyberProbe to allow precise detection of silent reverse proxies used to hide malicious servers. RevProbe leverages leakage based detection techniques to detect if a malicious server is hidden behind a silent reverse proxy and the infrastructure of servers behind it. At the core of RevProbe is the analysis of differences in the traffic by interacting with a remote server. v To my parents, the best people that I ever met in my life Acknowledgments he first thanks goes to Elo, for her infinite patience and love that you demonstrate. I want also to thank my sister Paola, to help me in my T moments of crisis. And I want to thank myself for never giving up. I also want to thank the following people that helped with their positive attitudes and jokes to make the journey of PhD more pleasant: Goran Doychev, Srdjan Matic, Miguel Ambrona, German Delbianco, Julian Samborski-Forlese, Alejandro Sanchez, Miriam Garcia, Marcos Sebastian, Luca Nizzardo, Platon Kotzias and Aristide Fattori. I want also to thank all my coauthors for their efforts. The last thanks goes to my advisor Juan Caballero, to be a guidance, a point of reference, a source of wisdom and inspiration. vii Contents 1 Introduction 1 1.1 Victim Infection ............................ 2 1.1.1 Problem Statement ...................... 3 1.1.2

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    189 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us