Entropy Power Inequalities for Qudits

Entropy Power Inequalities for Qudits

Entropy power inequalities for qudits M¯arisOzols University of Cambridge Nilanjana Datta Koenraad Audenaert University of Cambridge Royal Holloway & Ghent University = convolution = beamsplitter = partial swap f (r l s) ≥ lf (r) + (1 − l)f (s) I r, s are distributions / states cH(·) I f (·) is an entropic function such as H(·) or e I r l s interpolates between r and s where l 2 [0, 1] Entropy power inequalities Classical Quantum Shannon Koenig & Smith Continuous [Sha48] [KS14, DMG14] This work Discrete — = convolution = beamsplitter = partial swap Entropy power inequalities Classical Quantum Shannon Koenig & Smith Continuous [Sha48] [KS14, DMG14] This work Discrete — f (r l s) ≥ lf (r) + (1 − l)f (s) I r, s are distributions / states cH(·) I f (·) is an entropic function such as H(·) or e I r l s interpolates between r and s where l 2 [0, 1] Entropy power inequalities Classical Quantum Shannon Koenig & Smith Continuous [Sha48] [KS14, DMG14] = convolution = beamsplitter This work Discrete — = partial swap f (r l s) ≥ lf (r) + (1 − l)f (s) I r, s are distributions / states cH(·) I f (·) is an entropic function such as H(·) or e I r l s interpolates between r and s where l 2 [0, 1] I aX is X scaled by a: fX f2X 0 1 2 3 4 I prob. density of X + Y is the convolution of fX and fY: fX fY fX+Y * = -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 Continuous random variables d I X is a random variable over R with prob. density function Z d fX : R ! [0, ¥) s.t. fX(x)dx = 1 Rd fX 0 1 2 3 4 0 1 2 3 4 I prob. density of X + Y is the convolution of fX and fY: fX fY fX+Y * = -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 Continuous random variables d I X is a random variable over R with prob. density function Z d fX : R ! [0, ¥) s.t. fX(x)dx = 1 Rd I aX is X scaled by a: fX f2X 0 1 2 3 4 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 Continuous random variables d I X is a random variable over R with prob. density function Z d fX : R ! [0, ¥) s.t. fX(x)dx = 1 Rd I aX is X scaled by a: fX f2X I prob. density of X + Y is the convolution of fX and fY: fX fY fX+Y * = I Shannon’s EPI [Sha48]: f (X l Y) ≥ lf (X) + (1 − l)f (Y) where f (·) is H(·) or e2H(·)/d (equivalent) I Proof via Fisher info & de Bruijn’s identity [Sta59, Bla65] I Applications: I upper bounds on channel capacity [Ber74] I strengthening of the central limit theorem [Bar86] I ... Classical EPI for continuous variables I Scaled addition: p p X l Y := l X + 1 − l Y I Proof via Fisher info & de Bruijn’s identity [Sta59, Bla65] I Applications: I upper bounds on channel capacity [Ber74] I strengthening of the central limit theorem [Bar86] I ... Classical EPI for continuous variables I Scaled addition: p p X l Y := l X + 1 − l Y I Shannon’s EPI [Sha48]: f (X l Y) ≥ lf (X) + (1 − l)f (Y) where f (·) is H(·) or e2H(·)/d (equivalent) Classical EPI for continuous variables I Scaled addition: p p X l Y := l X + 1 − l Y I Shannon’s EPI [Sha48]: f (X l Y) ≥ lf (X) + (1 − l)f (Y) where f (·) is H(·) or e2H(·)/d (equivalent) I Proof via Fisher info & de Bruijn’s identity [Sta59, Bla65] I Applications: I upper bounds on channel capacity [Ber74] I strengthening of the central limit theorem [Bar86] I ... I Transmissivity l: p p Bl := l I + i 1 − l X ) Ul 2 U(H ⊗ H) I Combining states: † r1 l r2 := Tr2 Ul(r1 ⊗ r2)Ul I Quantum EPI [KS14, DMG14]: f (r1 l r2) ≥ lf (r1) + (1 − l)f (r2) where f (·) is H(·) or eH(·)/d (not equivalent) I Analogue, not a generalization Continuous quantum EPI I Beamsplitter: aˆ B dˆ r1 aˆ cˆ B = B 2 U(2) bˆ cˆ bˆ dˆ r2 I Combining states: † r1 l r2 := Tr2 Ul(r1 ⊗ r2)Ul I Quantum EPI [KS14, DMG14]: f (r1 l r2) ≥ lf (r1) + (1 − l)f (r2) where f (·) is H(·) or eH(·)/d (not equivalent) I Analogue, not a generalization Continuous quantum EPI I Beamsplitter: aˆ B dˆ r1 aˆ cˆ B = B 2 U(2) bˆ cˆ bˆ dˆ r2 I Transmissivity l: p p Bl := l I + i 1 − l X ) Ul 2 U(H ⊗ H) I Quantum EPI [KS14, DMG14]: f (r1 l r2) ≥ lf (r1) + (1 − l)f (r2) where f (·) is H(·) or eH(·)/d (not equivalent) I Analogue, not a generalization Continuous quantum EPI I Beamsplitter: aˆ B dˆ r1 aˆ cˆ B = B 2 U(2) bˆ cˆ bˆ dˆ r2 I Transmissivity l: p p Bl := l I + i 1 − l X ) Ul 2 U(H ⊗ H) I Combining states: † r1 l r2 := Tr2 Ul(r1 ⊗ r2)Ul I Analogue, not a generalization Continuous quantum EPI I Beamsplitter: aˆ B dˆ r1 aˆ cˆ B = B 2 U(2) bˆ cˆ bˆ dˆ r2 I Transmissivity l: p p Bl := l I + i 1 − l X ) Ul 2 U(H ⊗ H) I Combining states: † r1 l r2 := Tr2 Ul(r1 ⊗ r2)Ul I Quantum EPI [KS14, DMG14]: f (r1 l r2) ≥ lf (r1) + (1 − l)f (r2) where f (·) is H(·) or eH(·)/d (not equivalent) Continuous quantum EPI I Beamsplitter: aˆ B dˆ r1 aˆ cˆ B = B 2 U(2) bˆ cˆ bˆ dˆ r2 I Transmissivity l: p p Bl := l I + i 1 − l X ) Ul 2 U(H ⊗ H) I Combining states: † r1 l r2 := Tr2 Ul(r1 ⊗ r2)Ul I Quantum EPI [KS14, DMG14]: f (r1 l r2) ≥ lf (r1) + (1 − l)f (r2) where f (·) is H(·) or eH(·)/d (not equivalent) I Analogue, not a generalization I Use S as a Hamiltonian: exp(itS) = cos t I + i sin t S I Partial swap: p p Ul := l I + i 1 − l S, l 2 [0, 1] I Combining two qudits: † r1 l r2 := Tr2 Ul(r1 ⊗ r2)Ul q = lr1 + (1 − l)r2 − l(1 − l) i[r1, r2] Partial swap I Swap: Sji, ji = jj, ii for all i, j 2 f1, . , dg I Partial swap: p p Ul := l I + i 1 − l S, l 2 [0, 1] I Combining two qudits: † r1 l r2 := Tr2 Ul(r1 ⊗ r2)Ul q = lr1 + (1 − l)r2 − l(1 − l) i[r1, r2] Partial swap I Swap: Sji, ji = jj, ii for all i, j 2 f1, . , dg I Use S as a Hamiltonian: exp(itS) = cos t I + i sin t S I Combining two qudits: † r1 l r2 := Tr2 Ul(r1 ⊗ r2)Ul q = lr1 + (1 − l)r2 − l(1 − l) i[r1, r2] Partial swap I Swap: Sji, ji = jj, ii for all i, j 2 f1, . , dg I Use S as a Hamiltonian: exp(itS) = cos t I + i sin t S I Partial swap: p p Ul := l I + i 1 − l S, l 2 [0, 1] Partial swap I Swap: Sji, ji = jj, ii for all i, j 2 f1, . , dg I Use S as a Hamiltonian: exp(itS) = cos t I + i sin t S I Partial swap: p p Ul := l I + i 1 − l S, l 2 [0, 1] I Combining two qudits: † r1 l r2 := Tr2 Ul(r1 ⊗ r2)Ul q = lr1 + (1 − l)r2 − l(1 − l) i[r1, r2] Main result Function f : D(Cd) ! R is I concave if f lr + (1 − l)s ≥ lf (r) + (1 − l)f (s) I symmetric if f (r) = s(spec(r)) for some sym. function s Theorem If f is concave and symmetric then for any r, s 2 D(Cd), l 2 [0, 1] f (r l s) ≥ lf (r) + (1 − l)f (s) Proof Main tool: majorization. We show that spec(r l s) ≺ l spec(r) + (1 − l) spec(s) Summary of EPIs f (r l s) ≥ lf (r) + (1 − l)f (s) Continuous variable Discrete Classical Quantum Quantum (d dims) (d modes) (d dims) entropy H(·) X X X entropy power c = 2/d c = 1/d 0 ≤ c ≤ 1/(log d)2 ecH(·) entropy photon c = 1/d — 0 ≤ c ≤ 1/(d − 1) number (conjectured) g−1(cH(·)) g(x) := (x + 1) log(x + 1) − x log x I Conditional version of EPI I trivial for c.v. distributions I proved for Gaussian c.v. states [Koe15] I qudit analogue. ? I Generalization to 3 or more systems I trivial for c.v. distributions I proved for c.v. states [DMLG15] I combining three states: [Ozo15] I proving the EPI. ? I Applications I upper bounding product-state classical capacity of certain channels I more. ? Open problems I Entropy photon number inequality for c.v. states I classical capacities of various bosonic channels (thermal noise, bosonic broadcast, and wiretap channels) I proved only for Gaussian states so far [Guh08] I does not seem to follow by taking d ! ¥ I Generalization to 3 or more systems I trivial for c.v. distributions I proved for c.v. states [DMLG15] I combining three states: [Ozo15] I proving the EPI. ? I Applications I upper bounding product-state classical capacity of certain channels I more.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us