Many-Body Perturbation Theory: (1) the GW Approximation

Many-Body Perturbation Theory: (1) the GW Approximation

Many-Body Perturbation Theory: (1) The GW Approximation Michael Rohlfing Fachbereich Physik Universit¨atOsnabr¨uck • Motivation MASP, June 29, 2012 • Excited states: electrons, holes • Equation of motion • Approximations and tricks • Examples Relevance of excited electronic states • Spectroscopy: – Electrons: Photoemission / Inverse PE / Tunneling spectroscopy – Light / Electron-hole pairs: Absorption / Emission / Reflectivity • Characterisation of systems: ••••••• – Geometric Structure • • • • • – Defects / interfaces / ... • ••• • ⇐⇒ • • • • • – Macroscopic signature of • • • • •• • microscopic details B B V B ¡ B • Short-time dynamics: B B¡ B B B hω¯ BBN – Electrons (femtoseconds) BN – Atomic structure (picoseconds) V V • Technological relevance / Materials science: – Optoelectronics / Molecular electronics / Photovoltaics – Manipulation of bonds / Photochemistry Density-Functional Theory: from 1960’s until today 1950’s/60’s: Energy of electronic systems (homogeneous electron gas, inhomogeneous systems), including many-body effects (exchange, correlation) Hohenberg, Kohn, Sham and others 1960’s: interrelation between wave function, Z 2 3 3 potential, energy, single-particle density ρ(r) = |Ψ(r, r2, .., rN )| d r2...d rN , ”single-particle orbitals” ψn(r) and ”single-particle energies” ²n =⇒ Intuitive understanding via effective single-particle quantum mechanics Technical issues (1970’s-today): Pseudopotentials, basis sets, iterations, geometry optimization, molecular dynamics, ... Approximation of Exchange+Correlation (1970’s-today): Local-density approximation (LDA), Generalized gradient approximation (GGA), ”Hybrid functionals” (including Hartree-Fock exchange) PBE0-BLYP-B3LYP-HSE-... , ... Today: 50-100 codes + 100-1000 developers + 1000-10000 users Total energy Etot[R], Geometric structure, vibrations, chemical reactions, ... Physics + Chemistry SIESTA, VASP, ABINIT, CRYSTAL, GAUSSIAN, TURBOMOLE, ... Interpretation of ²n as ”single-particle energies” without formal justification DFT = ”ground-state method”: not suited for electronic excitation processes Density-Functional Theory (DFT) [Hohenberg, Kohn, Sham (1964)] • Atomic postions {R}, Electron density ρ(r) • Etot[R,ρ] = Ekin[ρ] + ECoul[ρ] + Exc[ρ] + Eext,e[R,ρ] + Enucl,nucl Aluminium: Etot(alatt) Ekin kinetic energy of the electrons 0.15 ECoul[ρ] classical Coulomb energy of the electrons 0.10 Exc[ρ] Exchange-correlation functional (Local-density approx., gradient corrections) 0.05 Energy [eV] Eext,e Nucl.-electron interaction (+ ext. fields) 0.00 Enucl,nucl Nucl-Nucl interaction 3.8 3.9 4.0 4.1 4.2 ˚ X DFT 2 Lattice constant [A] • Optimize Etot[R,ρ] w.r.t. ρ(r) = |ψm (r)| 0 2 1 B p C B [ρ] [ρ] C DFT DFT DFT =⇒ Kohn-Sham equations: @ + V (r) + V (r) + V (r)A ψ (r) = ² ψ (r) 2m Coul xc ext,e m m m =⇒ Total energy Etot[R] and forces ∂Etot/∂Riα ←→ Geometry, bonds, phonons, ... DFT DFT ”Wave functions” |ψm i, ”Band-structure energies” ²m (often not really reliable...) DFT for bulk systems Phase transition of N in GaAs: Forces on atoms silicon under pressure: Diamond → β-Sn Transition pressure P= • Ga • As • N dE/dV ∼ 10 GPa Ga (1.Nb.): 2.0 eV/A˚ As (2.Nb.): 0.1 eV/A˚ =⇒ Relaxations at defect Surfaces geometries from DFT Si(111)-(2×1) surface: π-bonded chains Adsorbed molecules: PTCDA on Ag(111) K.C. Pandey, Phys. Rev. Lett. 49, 223 (1982) 1 0.027 0.0046 ] 0.00342 −− B 0.0022a [ 0.001 0 −0.0002 −0.0014 dy ) r ( −0.0026ρ ∆ −0.0038Z 0 −0.005–0.027 0 1 Up Down Change of charge density during adsorption: ˚ 2.33 A˚ l ∆z = 0.51 A Red: charge accumulation ¡ ¡ 2.25 A˚ 2.28 A˚ Blue: charge depletion Many-Body Perturbation Theory: from 1960’s until today Key Idea of Many-Body Perturbation Theory: (0) (0) (0) −1 • H (including simplified el.-el. interac.) =⇒ G1 (E) = (E − H ) (exact) • plus rest of electron-electron interaction (= ”perturbation”): (0) (0) =⇒ G1(E) = G1 (E) + G1 (E) Σ(E) G1(E) Σ(E) = Self-energy operator (=single-particle signature of remaining interaction) 1950’s/60’s: Spectra of electronic systems (homogeneous electron gas) [ Hedin and others, 1960’s ] ”Forgotten” (success of DFT; computational effort), ”recovered” due to DFT band-gap problem. Band structure of bulk semiconductors (1980’s): Hybertsen, Louie, Godby, Schl¨uter,Sham, ... Surfaces, nanostructures (1980’s/90’s) Optical spectra (1990’s/2000’s): Onida, Reining, Benedict, Shirley, Rohlfing, Louie, ... Technical issues (1980’s-today): Basis sets, frequency integration, eigenvalue decomposition, self consistency, ... Today: 10-20 codes + 30-50 developers + 50-100 users Band structures + optical excitations Crystals, surfaces, molecules, polymers, ... States of a many-electron system N Electrons |N, 0i 1. Ground state |N, 0i : Density-functional theory =⇒ Geometry States of a many-electron system N − 1 Electrons N Electrons N + 1 Electrons V V |N − 1, 1i |N + 1, 1i • HYH ©©* • HH ©© HH ©© G HH ©© G o 1 H © 1 |N − 1, 0i H |N, 0i -© |N + 1, 0i G1 = Single-particle Green function 1. Ground state |N, 0i : Density-functional theory =⇒ Geometry Many-body perturbation theory: 0 0 + 0 0 2. |N, 0i → |N ± 1, mi : G1(xt, x t ) = −i hN, 0 |T (ψ(x, t)ψ (x , t ))| N, 0i (Propagation of electron or hole between (x, t) and (x0, t0) ) Hedin’s equations [ L. Hedin, Phys. Rev. 139, A796 (1965), L. Hedin and S. Lundqvist, Sol.St.Phys. 23, 1 (1969). ] ½ ∂ ¾ Z e2 • EOM of G : i + ∇2 − V (r) − V (r) G (xt, x0t0) + i G (x00t, x00t, xt, x0t0)dx00 = δ(x, x0)δ(t, t0) 1 ∂t ext Coul 1 |r − r00| 2 • Decoupling by self-energy operator Σ: Z 2 {∂t + ∇ − Vext+Coul(r)}G1(12) − Σ(13)G1(32)d(3) = δ(12) Σ = Self energy Z + Σ(12) = i W (1 3)G1(14)Γ(42; 3)d(34) W = Screened Coulomb interaction Z W (12) = ²−1(13)v(32)d(3) ² = Dielectric function Z χ0 = Polarizability ²(12) = δ(12) + v(13)χ0(32)d(3) Z G1 = Single-particle Green function χ0(12) = −i G1(23)G1(42)Γ(34; 1)d(34) Γ = Vertex function Z δΣ(12) (1) = (r ,σ ,t ) Position/Spin/Time Γ(12; 3) = δ(12)δ(13) + G1(46)G1(75)Γ(67; 3)d(4567) 1 1 1 δG1(45) 2 Z {∂t + ∇ − Vext+Coul(r)}G1(12) − Σ(13)G1(32)d(3) = δ(12) Σ(12) = iG (12)W (1+2) ”GW approximation”: 1 =⇒ Z −1 Γ(12; 3) = δ(12)δ(13) W (12)= ² (13)v(32)d(3) Z ²(12) = δ(12) + v(13)χ0(32)d(3) χ0(12) = −iG1(21)G1(12) Hedin’sPhysical equations significance of Σ: −1 [ L. Hedin,• in Phys.vacuum Rev.: 139,χ0=0, A796² (1965),=1, ² L.=1, HedinW and=v S. Lundqvist, Sol.St.Phys. 23, 1 (1969). ] ½ ∂ ¾ Z e2 • EOM of G : i=⇒+Σ∇ =2 −iGV 1v(r) −ExchangeV (r) G (Fock)(xt, x0t0) operator + i / Hartree-FockG (x00t, x00t, xt, theoryx0t0)dx00 = δ(x, x0)δ(t, t0) 1 ∂t ext Coul 1 |r − r00| 2 • Decoupling• byin self-energymatter: Dielectric operator Σ: polarizability χ0 =⇒ ”W <v” (weaker) Z 2 {∂t + ∇ − Vext+Coul(r)}G1(12) − Σ(13)G1(32)d(3) = δ(12) Σ=== Self= energy =⇒Z Σ = iG1W ”Screened Exchange” = = + - Σ(12) = i W (1 3)G1(14)Γ(42; 3)d(34) = W = Screened Coulomb interaction Z W (12)• =Nomenclature:²−1(13)v(32)d(3) ² = Dielectric function Z χ0 = Polarizability ²(12) =Σδ(12) = iG + 1vv(13)+ iGχ0(32)1(Wd(3)− v) = ”Exchange” + ”Correlation” Z G1 = Single-particle Green function χ0(12) = −i G1(23)G1(42)Γ(34; 1)d(34) Γ = Vertex function Z δΣ(12) (1) = (r ,σ ,t ) Position/Spin/Time Γ(12; 3) = δ(12)δ(13) + G1(46)G1(75)Γ(67; 3)d(4567) 1 1 1 δG1(45) 2 Z {∂t + ∇ − Vext+Coul(r)}G1(12) − Σ(13)G1(32)d(3) = δ(12) Σ(12) = iG (12)W (1+2) ”GW approximation”: 1 =⇒ Z −1 Γ(12; 3) = δ(12)δ(13) W (12)= ² (13)v(32)d(3) Z ²(12) = δ(12) + v(13)χ0(32)d(3) χ0(12) = −iG1(21)G1(12) Hedin’s equations [ L. Hedin, Phys. Rev. 139, A796 (1965), L. Hedin and S. Lundqvist, Sol.St.Phys. 23, 1 (1969). ] ½ ∂ ¾ Z e2 • EOM of G : i + ∇2 − V (r) − V (r) G (xt, x0t0) + i G (x00t, x00t, xt, x0t0)dx00 = δ(x, x0)δ(t, t0) 1 ∂t ext Coul 1 |r − r00| 2 • Decoupling by self-energy operator Σ: Z 2 {∂t + ∇ − Vext+Coul(r)}G1(12) − Σ(13)G1(32)d(3) = δ(12) Σ = Self energy Z + Σ(12) = i W (1 3)G1(14)Γ(42; 3)d(34) W = Screened Coulomb interaction Z W (12) = ²−1(13)v(32)d(3) ² = Dielectric function Z χ0 = Polarizability ²(12) = δ(12) + v(13)χ0(32)d(3) Z G1 = Single-particle Green function χ0(12) = −i G1(23)G1(42)Γ(34; 1)d(34) Γ = Vertex function Z δΣ(12) (1) = (r ,σ ,t ) Position/Spin/Time Γ(12; 3) = δ(12)δ(13) + G1(46)G1(75)Γ(67; 3)d(4567) 1 1 1 δG1(45) 2 Z {∂t + ∇ − Vext+Coul(r)}G1(12) − Σ(13)G1(32)d(3) = δ(12) Σ(12) = iG (12)W (1+2) ”GW approximation”: 1 =⇒ Z −1 Γ(12; 3) = δ(12)δ(13) W (12)= ² (13)v(32)d(3) Z ²(12) = δ(12) + v(13)χ0(32)d(3) χ0(12) = −iG1(21)G1(12) Some pragmatic issues 0 0 • Time homogeneity: G1(t, t ) = G1(t − t ) ; Fourier transform to energy: G1(E), Σ(E) etc. • ”Quasiparticle (QP) approximation”: QP peak ¡ Ignore background, satellites, etc. in G1(E) Background ¡ - QP QP QP 0 ∗ Satellite 2Im(Em ) 0 X φm (x)(φm (x )) =⇒ G1(x, x ,E) = m QP + E − Em ± i0 QP QP Re(Em ) = QP band-structure energy, Re(Em ) QP QP Im(Em ) = spectral width, 1/Im(Em ) = lifetime 2 QP Z 0 QP QP 0 QP QP • EOM: { − ∇ + Vext(r) + VCoul(r)}φm (x) + Σ(x, x ,Em )φm (x )dx = Em φm (x) • Self-consistency problem similar to DFT, Hartree-Fock, etc.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    24 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us