Mathematical Models in Population Dynamics By

Mathematical Models in Population Dynamics By

MATHEMATICAL MODELS IN POPULATION DYNAMICS BY ALEXANDER SALISBURY A Thesis Submitted to the Division of Natural Sciences New College of Florida in partial fulfillment of the requirements for the degree Bachelor of Arts Under the sponsorship of Dr. Necmettin Yildirim Sarasota, FL April, 2011 ii ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Necmettin Yildirim for his support, guidance, and seemingly unlimited supply of patience. Additional thanks to my thesis committee members Dr. Chris Hart and Dr. Eirini Poimenidou for their guidance and criticism. Final thanks to family and friends for their love and support. iii TABLE OF CONTENTS Acknowledgements .............................................................................................................................. ii Table of Contents.................................................................................................................................. iii List of Tables and Figures ................................................................................................................. vi Abstract .....................................................................................................................................................1 Chapter 1: Background ........................................................................................................................2 1.1 What are Dynamical Systems? ............................................................................................................. 2 1.2 Formulating the Model ........................................................................................................................... 5 1.3 Methods for Analysis of Population Dynamics .............................................................................. 8 Solving Differential Equations ................................................................................................................ 8 Expressing in Dimensionless Form ...................................................................................................... 8 One-Dimensional Models: Geometrical Analysis ......................................................................... 10 One-Dimensional Models: Local Linearization ............................................................................. 11 Two-Dimensional Models: Geometrical Analysis ........................................................................ 13 Two-Dimensional Models: Local Linearization ............................................................................ 15 Classification of Equilibria .................................................................................................................... 19 1.4 An Historical Overview of Population Dynamics....................................................................... 23 Fibonacci ...................................................................................................................................................... 25 Leonhard Euler .......................................................................................................................................... 26 Daniel Bernoulli ........................................................................................................................................ 27 Thomas Robert Malthus ......................................................................................................................... 28 Pierre-François Verhulst ....................................................................................................................... 29 Leland Ossian Howard and William Fuller Fiske ......................................................................... 32 Raymond Pearl .......................................................................................................................................... 33 iv Alfred James Lotka and Vito Volterra ............................................................................................... 36 Anderson Gray McKendrick and William Ogilvy Kermack ....................................................... 40 Georgy Frantsevich Gause ..................................................................................................................... 43 Chapter 2: Single-Species Population Models ........................................................................... 45 2.1 Malthusian Exponential Growth Model ......................................................................................... 47 Analytic Solution ....................................................................................................................................... 47 Geometrical Analysis ............................................................................................................................... 48 Assumptions of the Model ..................................................................................................................... 50 2.2 Classical Logistic Growth Model ...................................................................................................... 51 Analytic Solution ....................................................................................................................................... 52 Obtaining Equilibrium Points .............................................................................................................. 53 Geometrical Analysis ............................................................................................................................... 54 Local Linearization .................................................................................................................................. 56 Assumptions of the Model ..................................................................................................................... 57 2.3 Theta Logistic Growth Model ............................................................................................................ 58 2.4 Logistic Model with Allee Effect ....................................................................................................... 61 Geometrical Analysis ............................................................................................................................... 63 2.5 Growth Model with Multiple Equilibria ........................................................................................ 65 Geometrical Analysis ............................................................................................................................... 66 Chapter 3: Multispecies Population Models .............................................................................. 68 3.1 Interspecific Competition Model...................................................................................................... 71 Obtaining Equilibrium Points .............................................................................................................. 72 Geometrical Analysis ............................................................................................................................... 73 Local Linearization .................................................................................................................................. 80 3.2 Facultative Mutualism Model ............................................................................................................ 82 v Obtaining Equilibrium Points .............................................................................................................. 83 Geometrical Analysis ............................................................................................................................... 84 Local Linearization .................................................................................................................................. 86 3.3 Obligate Mutualism Model ................................................................................................................. 88 Geometrical Analysis ............................................................................................................................... 88 3.4 Predator-Prey Model ............................................................................................................................ 92 Geometrical Analysis ............................................................................................................................... 93 Local Linearization .................................................................................................................................. 96 Chapter 4: Concluding Remarks .................................................................................................... 98 References .......................................................................................................................................... 101 vi LIST OF TABLES AND FIGURES Figure 1.1 .........................................................................................................................................4 Figure 1.2 .........................................................................................................................................5 Figure 1.3 .......................................................................................................................................11 Figure 1.4 .......................................................................................................................................15

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    110 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us