The Soft-Collinear Effective Theory

The Soft-Collinear Effective Theory

The Soft-Collinear Effective Theory Iain W. Stewart MIT Ringberg Workshop April 30, 2003 Iain Stewart – p.1 Outline Motiviation • Soft-Collinear Effective Theory • 1) Power counting 2) Gauge Symmetries 3) Lagrangian 4) Factorization = separation of scales/interactions Factorization for B Dπ, DIS • ! Reparameterization Invariance, Power Corrections • New: Results for B ? ? • ! Conclusions • Iain Stewart – p.2 Motivation Factorization: To describe hadronic processes we need to separate short (p Q) and long (p Λ ) distance contributions ∼ ∼ QCD Effective Field Theory: Useful for separating physics at different momentum scales Many processes have energetic hadrons Q Λ QCD B Decays: + B πeν, B ρeν, B K∗γ, B Ke e−, B γeν ! ( ) ! ! ! ! B D ∗ π, B ππ, B Kπ, ! ! ! B X eν, B X γ, B D∗X ! u ! s ! u Hard Scattering Processes: DIS, Drell Yan, jet production, γ∗p γX, 0 ! γ∗γ π , γ∗M M, ! ! ( ) γ∗p Xπ, γ∗p γ ∗ p0 ! ! Iain Stewart – p.3 What is Factorization? m m C (µ, m ) (µ, m ) 1 2 i i 1 Oi 2 P DIS structure functions [Q2 Λ2 , 1 x Λ =Q] QCD − QCD 2 1 1 F1(x; Q ) = x x dξ H(ξ=x; Q; µ) fi=p(ξ; µ) R 0 0 2 2 γ∗γ π form factor from e−γ e−π [Q Λ ] ! ! QCD Brodsky-Lepage 2 fπ 1 Fπγ (Q ) = Q2 0 dξ T (ξ; Q; µ) φπ(ξ; µ) R B Dπ decay rate [Q = mQ; Eπ ΛQCD] ! f g Politzer-Wise B D 1 mc Dπ d¯uc¯b B = NF ! (0) dξ T (ξ; ; Q; µ) φπ(ξ; µ) h j j i 0 mb R Iain Stewart – p.4 A Goal Traditionally factorization of collinear and soft gluons involves an analysis of diagrams Collins,Soper,Sterman Can this be made simpler? Iain Stewart – p.5 Kinematics Take: nµ = (1; 0; 0; 1), n¯µ = (1; 0; 0; 1) − eg1. p B D Pion has: pµ = (2:310 GeV; 0; 0; 2:306 GeV) = Q nµ π − collinear constituents: Q ΛQCD 2 + ΛQCD 2 (p ; p−; p?) ; Q; Λ Q(λ ; 1; λ) λ 1 ∼ Q QCD ∼ γ eg2. Xs B endpoint jet constituents: + 2 (p ; p−; p?) Λ ; Q; QΛ Q(λ ; 1; λ) λ 1 ∼ QCD QCD ∼ p Iain Stewart – p.6 Soft-Collinear Effective Theory Introduce fields for infrared degrees of freedom modes pµ = (+; ; ) p2 − ? collinear Q(λ2; 1; λ) Q2λ2 soft Q(λ, λ, λ) Q2λ2 usoft Q(λ2; λ2; λ2) Q2λ4 Offshell modes with p2 Q2λ2 are integrated out Developed in: C. Bauer, S. Fleming, M. Luke, hep-ph/0005275 (PRD) C. Bauer, S. Fleming, D. Pirjol, I. Stewart, hep-ph/0011336 (PRD) C. Bauer, I. Stewart, hep-ph/0107001 (PLB) C. Bauer, D. Pirjol, I.Stewart, hep-ph/0109045 (PRD) Builds on and extends earlier work: Hard Exclusive: Brodsky, Lepage, : : : Jet physics: Collins, Soper, Sterman, Korchemsky, : : : B-physics: Beneke, Buchalla, Neubert, Sachrajda, : : : Iain Stewart – p.7 Soft-Collinear Effective Theory Introduce fields for infrared degrees of freedom modes pµ = (+; ; ) p2 − ? collinear Q(λ2; 1; λ) Q2λ2 soft Q(λ, λ, λ) Q2λ2 usoft Q(λ2; λ2; λ2) Q2λ4 Offshell modes with p2 Q2λ2 are integrated out Goals of EFT: simplify power counting in λ • make symmetries explicit • sum IR logarithms, Sudakov double logarithms • understand factorization in a universal way • model independent description of power corrections • Iain Stewart – p.7 Soft-Collinear Effective Theory Introduce fields for infrared degrees of freedom modes pµ = (+; ; ) p2 − ? collinear Q(λ2; 1; λ) Q2λ2 soft Q(λ, λ, λ) Q2λ2 usoft Q(λ2; λ2; λ2) Q2λ4 Offshell modes with p2 Q2λ2 are integrated out Typically either: usoft pµ Λ SCETI λ = Λ=Q ∼ collinear p2 QΛ c ∼ p SCET λ = Λ=Q soft pµ Λ II ∼ collinear p2 Λ2 c ∼ Iain Stewart – p.7 1) Power counting 2) Gauge Symmetries 3) Lagrangian 4) Factorization Iain Stewart – p.8 Separate Momenta label residual µ µ µ HQET P = mbv + k hv(x) (Georgi) µ µ µ SCET P = p + k ξn;p(x) (1; λ) Q Collinear Quarks k ip x . (x) e− · ξn;p(x) Q λ ! p p . n= ξn;p = P0 µ 2 . @ ξn;p (Qλ ) ξn;p ∼ Q λ2 But labels are changed q • by SCET interactions p p′ Iain Stewart – p.9 Separate Momenta Introduce Label Operator µ y µ µ y φ φp = (p +: : : q : : :) φ φp P q1 · · · 1 · · · 1 − 1 − q1 · · · 1 · · · Can pull phases to front of operators • µ ip x ip x µ µ i@ e− · φ (x) = e− · ( + i@ )φ (x) p P p Iain Stewart – p.10 Power Counting + Type (p ; p−; p?) Fields Field Scaling 2 collinear (λ ; 1; λ) ξn;p λ + 2 (An;p, An;p− , An;p? ) (λ , 1, λ) 3=2 soft (λ, λ, λ) qs;p λ µ As;p λ 2 2 2 3 usoft (λ ; λ ; λ ) qus λ µ 2 Aus λ n¯= Make kinetic terms order λ0 d4X ξ¯ 0 in @ + : : : ξ n;p 2 · n;p 0 4 2 λ = R λ− λ λ λ At leading power only λ0 interactions are required • n¯ A n¯ q λ0 operators are f(n¯ A ; n¯ q ) • · n;q ∼ · i ∼ · n;q · i Iain Stewart – p.11 More Power Counting In an arbitrary graph, Euler identities allow all powers of λ to be associated just with vertices Bauer, Pirjol, I.S. π SCET graphs λδ I ∼ B D δ = 4u + 4 + (k 4)V c + (k 8)V us − k − k k i X k where Vk = # of order λ operators Power counting is gauge invariant • Iain Stewart – p.12 More Power Counting In an arbitrary graph, Euler identities allow all powers of λ to be associated just with vertices Bauer, Pirjol, I.S. π SCET graphs λδ II ∼ B D δ = 4 + (k 4)(V c + V s + V scE) + (k 2)V scL − k k k − k k i X k where Vk = # of order λ operators Power counting is gauge invariant • Iain Stewart – p.12 1) Power counting 2) Gauge Symmetries 3) Lagrangian 4) Factorization Iain Stewart – p.13 Wilson Lines and Coefficients Consider matching for heavy-to-light current, u¯ Γ b ξ¯n;p Γ hv u integrate out offshell quarks b n¯ A one-gluon: ξ¯ ( g) · n;q Γ h n;p − n¯ q v · ( g)k n¯ A n¯ A all orders: ξ¯ − · n;q1 · · · · n;qk Γ h n;p k! k v perms [n¯ q1] [n¯ i=1 qi] Xk X · · · · · P W y W is like W (y; ) = P exp ig ds n¯ A (sn¯µ) −∞ · n Z−∞ Iain Stewart – p.14 Wilson Lines and Coefficients Consider matching for heavy-to-light current, u¯ Γ b ξ¯n;p Γ hv u integrate out offshell quarks b n¯ A one-gluon: ξ¯ ( g) · n;q Γ h n;p − n¯ q v · ( g)k n¯ A n¯ A all orders: ξ¯ − · n;q1 · · · · n;qk Γ h n;p k! k v perms [n¯ q1] [n¯ i=1 qi] Xk X · · · · · P W 1 W = exp g n¯ An;q perms − ¯ · P P h i Iain Stewart – p.14 Gauge Invariance J = ξ¯n;pW Γhv is invariant Consider collinear gauge transformation U, @µ U(y) Q(λ2; 1; λ) ∼ . ξn Uξn, W UW , h ! h (since!Uh is far offshell) v ! v v Consider ultrasoft gauge transformation U, @µ U(y) Qλ2 ∼ . ξ Uξ , W UW U y, h Uh n ! n ! v ! v U, U transformations are homogeneous in λ • matching argument not spoiled by loop corrections • Hard-Collinear Factorization: f( ¯ + gn¯ A ) = W f( ¯)W y • P · n;q P Wilson coefficients are only functions of ¯ = n¯ λ0, and their • P ·P ∼ location is restricted by gauge invariance e.g. C(µ, ¯) ξ¯ W Γh P n;p v Iain Stewart – p.15 1) Power counting 2) Gauge Symmetries 3) Lagrangian 4) Factorization Iain Stewart – p.16 Collinear Lagrangian (0) 1 n¯= ¯ 0 c c ξξ = ξn;p n i@+gn Aus +gn An;q + iD= W W y iD= ξn;p L · · · ? ¯ ? 2 P most general order λ0 gauge invariant action • µ µ µ n Aus n An;q but others suppressed, iDc? = + gAn;q? • · ∼ · P? k has multipole expansion for usoft kµ • p in= n¯ p final propagator = · 2 [ (n k + n p) n¯ p + p2 + i] · · · ? (0) µ cg (A ; n A ) L n;q · us order λ0, gauge invariant, also multipole expanded • A enters like a background field for A • us n;q Usoft and Soft actions are just like QCD at LO Iain Stewart – p.17 Feynman Rules µ , A µ , A p p′ µ , A ν , B q p p′ ξ describe fluctuations of quark about direction n • n (0): has particles & antiparticles, pair creation Lξξ • includes spin-dependent effects, k2 effects, binding • ? Iain Stewart – p.18 1) Power counting 2) Gauge Symmetries 3) Lagrangian 4) Factorization Iain Stewart – p.19 Factorization of Usoft Gluons Consider the following field redefinitions in SCET (0) (0) ξn;p = Yn ξn;p ; An;q = Yn An;q Yny x where Yn = P exp ig ds n Aus(ns) , n DYn = 0, and YnyYn = 1 −∞ · · Find R (0) (0) = ξ¯ 0 in D + : : : ξ = ξ¯ 0 in @ + : : : ξn;p • Lq n;p · n;p ) n;p · (0) h i W = Y W Y y • n n µ (0) (0)µ (ξ ; A ; n A ) = (ξn;p; An;q ; 0) • L n;p n;q · us L Moves all usoft gluons to operators, simplifies cancellations ¯(0) (0) eg1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    64 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us