Ingegneria Industriale E Dell'innovazione Advanced Models for Prediction of High Altitude Aero- Thermal Loads of a Space Re-E

Ingegneria Industriale E Dell'innovazione Advanced Models for Prediction of High Altitude Aero- Thermal Loads of a Space Re-E

Uniiversiità degllii Studii delllla Basiilliicata DOTTORATO DI RICERCA IN Ingegneria Industriale e dell’Innovazione Ciclo XXI Settore scientifico disciplinare di afferenza: _____Ing–ind/08________________ TITOLO TESI Advanced Models for Prediction of High Altitude Aero- Thermal Loads of a Space Re-entry Vehicle Relatore: Candidato: Ch.mo Prof. Aldo Bonfiglioli Raffaele Votta Correlatore: Ch.mo Ing. Antonio Schettino Coordinatore: Ch.mo Prof. V. Magi Triennio 2005-2008 Ad Antonella Nomenclature....................................................................................................................................... 2 Subscripts and Superscripts................................................................................................................. 4 Chapter 1 Introduction ..................................................................................................................... 5 Chapter 2 Space Re-entry Vehicles.................................................................................................. 7 2.1. Reusable Launch Vehicle (RLV): Current Status and On-going Activities .................................................... 7 2.1.1. United States .................................................................................................................................. 8 2.1.2. Europe.......................................................................................................................................... 10 2.1.3. Other Countries............................................................................................................................ 12 2.2. Space Shuttle................................................................................................................................................. 13 2.3. ORION Crew Exploration Vehicle (CEV).................................................................................................... 16 2.4. Unmanned Space Vehicle (USV).................................................................................................................. 20 Chapter 3 Hypersonic Rarefied Flows ........................................................................................... 35 3.1. Hypersonic Flow Regime.............................................................................................................................. 35 3.2. Rarefied Flow and Navier-Stokes Breakdown .............................................................................................. 39 3.3. Basic kinetic Theory and Boltzmann Equation ............................................................................................. 46 3.3.1. The Boltzmann Equation.............................................................................................................. 51 3.3.2. The Moment and Conservation Equations.................................................................................... 57 3.3.3. Accommodation Coefficients....................................................................................................... 60 Chapter 4 Numerical Solutions ...................................................................................................... 62 4.1. Numerical Solution of Transitional Regime - Direct Simulation Monte Carlo (DSMC) .............................. 62 4.2. Solution of Free Molecular Flow .................................................................................................................. 68 4.3. Solution of Continuum Regime – Computational Fluid Dynamics (CFD) ................................................... 70 Chapter 5 Effects of Rarefaction on a Winged Hypersonic Re-entry Vehicle............................... 71 5.1. FTB-X High Altitude Aerodynamic.............................................................................................................. 72 5.1.1. Bridging Formulae ....................................................................................................................... 72 5.1.2. Test Conditions............................................................................................................................. 73 5.1.3. DSMC Results for the Whole Vehicle.......................................................................................... 76 5.1.4. Comparison of the Results from DSMC, CFD and Engineering Methods ................................... 78 5.2. Nose Thermal Analysis ................................................................................................................................. 81 5.2.1. Test Conditions............................................................................................................................. 81 5.2.2. Results.......................................................................................................................................... 82 5.3. Concluding Remarks ..................................................................................................................................... 84 Chapter 6 Local Effects of Rarefaction in Shock Wave Boundary Layer Interactions (SWBLI) ........................................................................................................................ 86 6.1. Shock Wave Boundary Layer Interaction ..................................................................................................... 88 6.2. Results ........................................................................................................................................................... 92 6.2.1. Hollow Cylinder Flare Test Case ................................................................................................. 92 6.2.2. CIRA Plasma Wind Tunnel Test.................................................................................................. 99 6.3. Concluding Remarks ................................................................................................................................... 104 Chapter 7 Orion CEV (Crew Esploration Vehilce): High Altitude Aerothermadynamics................................................................................................... 106 7.1. RTO-RTG043 Working Group ................................................................................................................... 106 7.2. Test Conditions and Results ........................................................................................................................ 108 7.2.1. Grid and Molecular Independence.............................................................................................. 109 7.2.2. Slip Flow Boundary Conditions Validation................................................................................ 110 7.2.3. Results........................................................................................................................................ 112 7.3. Concluding Remarks ................................................................................................................................... 119 Chapter 8 Conclusions ................................................................................................................. 121 References ....................................................................................................................................... 125 1 Nomenclature a = generic extensive variable ac = accommodation coefficient B = magnetic field CD, CL, CS = drag, lift and lateral force coefficients CMx, CMy, CMz = rolling, pitching and yawing moment coefficients c = molecular velocity vector Cf = skin friction coefficient Cp = pressure coefficient; specific heat at constant pressure Cv = specific heat at constant volume D = diameter of the nose Dij = diffusion tensor e = specific energy E = aerodynamic efficiency (E=CL/CD), Electric field f = normalized distribution function in velocity space Fm = Magnetic force F(N) = N particle distribution function F(R) = reduced distribution function F = cumulative distribution function FN = number or real molecules represented by a single DSMC one H = total enthalpy h = altitude, specific enthalpy HTHL = Horizontal Take off and Horizontal Landing K = Thermal conductivity Kn = Knudsen number L = reference length Lx, Ly, Lz = dimensions of FTB-X along the rolling (x), pitching (y) and yawing (z) axes M = Mach number mcs = mean collision separation n = number density nr = number flux 2 N = sampling molecules P = probability, pressure PFA = Projected Frontal Area PND, PNL = parameters defined by Equation 5-3 and Equation 5-4 PPA = Projected Planform Area q (0) = heat flux at the stagnation point Q = molecular quantity r = relative r = position vector RLV = Reusable Launch Vehicle R = gas constant Re = Reynolds number s = stream wise wetted length S = speed ratio SSTO = Single Stage to Orbit TPS = Thermal Protection System St = Stanton number t = time T = temperature u = velocity component in x direction v = velocity component in y direction V = velocity w = velocity component in z direction WA = Wetted Area X, Y, Z = dimensions of the computational domain V = flow velocity, m/s α = angle of attack β = angle of side-slip, reciprocal of most probable speed in an equilibrium gas δ = boundary layer thickness, mean molecular spacing ε = fraction of specular reflection ε0 = dielectric constant of vacuum γ = specific heat ratio λ = free molecule path 3 λε = electrical conductivity tensor ψ = single particle distribution function in phase space, inverse power law ρ = density

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    131 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us