MEMS Fabrication

MEMS Fabrication

MEMS Fabrication Cristina Rusu Imego AB 2011-02-21 2011-02-21 – Cristina Rusu MEMS • Semiconductors as mechanical materials • Bulk micromachining – Dry etching – Wet etching • Surface micromachining – MUMPs • Polymer MEMS • Wafer bonding 2011-02-21 – Cristina Rusu Technology: Micromachining Micro El ec tro Mec hani cal S yst ems (MEMS) Micro System Technology (MST) . Fabrication process similar to that used to make computer chips (Integrated Circuits) •Cappgable of High Precision • Can Operate at High Volumes • Produces Parts at Low Cost . Silicon is… • Extremely pure • Compatible with electronics • Suitable for micro-scale production … and it has outstanding mechanical properties 2011-02-21 – Cristina Rusu MEMS vs CMOS • CMOS compatible processes – No Au, no alkali metals (K, Na, ..) – Limited thermal budget (After doping) 2011-02-21 – Cristina Rusu Semiconductors as mechanical materials • First paper: ”Silicon as a mechanical material” (Kurt Petersen, 1978) – Stiffness: Young’s modulus of Si (130 GPa) close to that of steel – No plastic deformation – (Almost) no fatigue • Other semiconductor materials that are used as mechanical materials: – GaAs, InP , ... 2011-02-21 – Cristina Rusu Other MEMS materials • Polymers – Direct patternable: • UV: SU-8, Polyimide, BCB SU-8 SU-8 • Synchrotron X-ray: PMMA – Etchable • Polyimide, BCB – Moldable: • COC, PDMS, PMMA, Parafin – Evaporable • Parylene • Ceramics – Glass: P yrex, B orofl oa t, Quart z – LTCC PMMA 2011-02-21 – Cristina Rusu Aspect ratio = ratio of the depth to the width of hole / structure 2011-02-21 – Cristina Rusu MEMS • Semiconductors as mechanical materials • Bulk micromachining – Dryyg etching – Wet etching • Surface micromachining – MUMPs • Polymer MEMS • Wafer bonding 2011-02-21 – Cristina Rusu Bulk micromachining • Dry etching – Deep reactive ion etching (DRIE) – Inductively coupled plasma (ICP): The Bosch process • Wet etching – Isotropic (HNA) – Anisotropic (KOH, TMAH, ...) 2011-02-21 – Cristina Rusu DRY Etching - principle Reactant Products Mask Bombardment Impulse transfer Physical etching Film/substrate (a) Reactant Products Mask Adsorption Desorption Chemical etching Reaction (b) Reactant Products Mask Adsorption Desorption Ion-enhanced reaction Synergetical (c) 2011-02-21 – Cristina Rusu Chemical: isotropic etching E.g. XeF2 or SF6 2011-02-21 – Cristina Rusu Physical: tapered etching 2011-02-21 – Cristina Rusu Physical: tapered etching 2011-02-21 – Cristina Rusu Synergetical: vertical etching 2011-02-21 – Cristina Rusu Synergetical: vertical etching 2011-02-21 – Cristina Rusu Typical etching 2011-02-21 – Cristina Rusu The Bosch process 2011-02-21 – Cristina Rusu Cryogenic DRIE • Principle – SF6/O2 plasma – At cryogenic temperatures (T < -100 C), a passivating SiOxFy layer forms on top of the silicon surface – sputtered away from horizontal surfaces by directional ion bombardment. – thickness of the passivation layer is mainly determined by the O2 flow rate (more O2, more passivation) • Superior sidewall quality 2011-02-21 – Cristina Rusu http://www.clarycon .com/etch_mech_pic .html 2011-02-21 – Cristina Rusu Artifacts in dry etching Notching (ion trajectory distortion RIE lag or ARDE & chemical etching) Aspect ratio dependent etching Faceting, Ditching (Trenching) and Redeposition2011-02-21 – Cristina Rusu Advanced dry etching (1) 2011-02-21 – Cristina Rusu Advanced dry etching (2) 2011-02-21 – Cristina Rusu Typical RIE Gases Typical etch rate Material Typical etchant Typical mask (µm/min) SF6 ~ 3 - 8(DRIE)8 (DRIE) Si Photo resist, SiO2, Al BCl3 + Cl2 ~ 0.5 SiO2 CF4 ~ 0.02 Photo resist, Al Si3N4 CHF3 ~ 0.1 - 0.2 Photo resist, Al GaAs CCl2F2 + O2 ~ 0.2 Ni, Al, Cr SiC SF6 ~ 0.2 - 0.5 Photo resist, Al Al Cl2 ~ 0.3 Photo resist Au CCl2F2 ~ 0.05 Photo resist 2011-02-21 – Cristina Rusu Wet etching • Isotropic etching – Same etch rate in all directions – Lateral etch rate is about the same as vertical etch rate – Etch rate does not depend upon the orientation of the mask edge • Anisotropic etching – Etch rate depends upon orientation to crystalline planes – Lateral etch rate can be much larger or smaller than vertical etch rate, depending upon orientation of mask edge to crystalline axes – Orientation of mask edge and the details of the mask pattern determine the final etched shape • Can be very useful for making complex shapes • Can be very surprising if not carefully thought out • Only certain “standard” shapes are routinely used • MhhMuch cheaper th thdan dry et thithiching techniques • Higher safety risk for lab personnel: bases & acids instead of confined plasma 2011-02-21 – Cristina Rusu Crystal planes in silicon • Silicon: Face Centered Cubic (FCC) [100] [111] [010] [001] 2011-02-21 – Cristina Rusu Anisotropic wet etching - orientation dependent etching Si 2011-02-21 – Cristina Rusu <100> 2011-02-21 – Cristina Rusu Si 2011-02-21 – Cristina Rusu <011> 2011-02-21 – Cristina Rusu Anisotropic wet etching: AFM tips resistors Tip connection 2011-02-21 – Cristina300 μ Rusum KOH • Comparatively safe and non-toxic • High crystal plane selectivity • Limited SiO 2 selectivity • Not CMOS compatible: potassium (K) • Careful cleaning can allow KOH-etched wafers (Piranha cleaning) in not too picky CMOS facilities 2011-02-21 – Cristina Rusu Tetra-Methyyy()l Ammonium Hydroxide (TMAH) • CMOS compatible • Lower crystal plane selectivity: (111):(011):(100) 1:60:20 • High selectivity towards SiO2 • Pooso,coison, corros ive 2011-02-21 – Cristina Rusu Crystal alignment • Identifying the correct crystal alignment – Flat alignment: ±1º (standard) – Test etch + alignment – Alignment forks (Vangbo and Bäcklund): ±0.05º 2011-02-21 – Cristina Rusu Misalignment in orientation dependent etching Wafer flat <011> <100> <111> 2011-02-21 – Cristina Rusu Misalignment in orientation dependent etching Wafer flat 5o 2011-02-21 – Cristina Rusu Misalignment in orientation dependent etching Wafer flat 45o 2011-02-21 – Cristina Rusu Alignment forks (Vangbo & Bäcklund) 2011-02-21 – Cristina Rusu Corner compensation structures 2011-02-21 – Cristina Rusu Solution: corner compensation structures 2011-02-21 – Cristina Rusu Simulation software • Cellular automata -based simulation – 3D continuous • Intellisuite AnisE •Fast • Does not simulate surface roughness – Monte Carlo • CoventorWare: Etch3D • Advantage: precise • Slow, heavy on resources (memory, cpu) 2011-02-21 – Cristina Rusu AnisE 2011-02-21 – Cristina Rusu CoventorWare Etch3d 1406µm 575µm 700µm 575µm 140µm 500µm 575µm 290µm 2011-02-21 – Cristina Rusu MEMS • Semiconductors as mechanical materials • Bulk micromachining – Dry etching – Wet etching • Surface micromachining – Stiction – Lithophraphy – MUMPs • Polymer MEMS • Wafer bonding 2011-02-21 – Cristina Rusu Evaporation Drying - Stiction 2011-02-21 – Cristina Rusu Stiction = Big problem in MEMS Capillary force greater than structural stiffness • The microstructures may remain stuck to substrate even after dry . • Cause: solid bridging, van der Waals force, electrostatic force, hydrogen bonding, etc 2011-02-21 – Cristina Rusu Supercritical Drying Evaporation Drying Material Tc (ºC) Pc (atm) Pc (psi) Water 374 218 3204 Methanol 240 80 1155 CO231731073 Sublimation Drying Vapour phase Etching T-butyl alcohol – freezes at 26 ºC P-dichlorobenzene – freezes at 56 ºC Anhydrous HF vapour avoiding liquid-gas transition 2011-02-21 – Cristina Rusu Stiction Reduction Strategies Reduce Adhesion Area • dimples • surface roughening • low surface-energy coatings Integrate supporting microstructures • increase tolerance of capillary forces Examples: • microtethers •microfuses •sacrifici al suppor ting layers (ex. p ho tores is t) • coat devices with low surface-energy films 2011-02-21 – Cristina Rusu Lithography issues • MEMS: often ”large” height differences – Spray coating – Proximity exposure Still lower resolution 2011-02-21 – Cristina Rusu Surface micromachining, e.g. polyMUMPs • Cost per submission is $3,200/academic, $4,500/commercial – 1cm2 die area per submission – 15 identical dice returned (~$2/mm2) • Dicing, bonding, HF release are all available for additional cost • Parameterized and static design cells are free online • Design services are available for additional cost • 2-5 weeks time to evaluate/test chips and revise design for next scheduled run 2011-02-21 – Cristina Rusu polyMUMPs process flow 2011-02-21 – Cristina Rusu polyMUMPs process flow 2011-02-21 – Cristina Rusu polyMUMPs process flow 2011-02-21 – Cristina Rusu Example – IR microspectrometer 2011-02-21 – Cristina Rusu Different MUMPs processes • PolyMUMPs – 8 lithography levels , 7 physical layers – 3 Poly layers – 1 Metal layer • SOIMUMPs – 10 or 20 µm structure layer – Double-sided pattern/etch – 2 Metal layers • MetalMUMPs – 10 lithography layers – Thick electroplated Ni (18-22 µm) Source: MEMSCAP 2011-02-21 – Cristina Rusu MEMS • Semiconductors as mechanical materials • Bulk micromachining • Surface micromachining • Polymer MEMS • Wafer bonding 2011-02-21 – Cristina Rusu Polymer MEMS • Fabrication methods • Polymers – Parylene – PDMS – Paraffin – Polyimide, BCB – SU-8 – PMMA – ... 2011-02-21 – Cristina Rusu Polymer fabrication methods (1) Injection moulding Hot embossing Casting 2011-02-21 – Cristina Rusu Polymer fabrication methods (2) Stereolithography Ink jet printing 2011-02-21 – Cristina Rusu Parylene • Poly-para-xylylene • Vapor-phase deposition – Low-tempera ture process ( <100 ºC) – Very conformal (~100mbar) • Advantages: – Low surface roughness – Stress free – Excellent dielectric breakdown properties <1µm – Pinhole

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    66 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us