Motion Compensation with Sub-Pel Accuracy

Motion Compensation with Sub-Pel Accuracy

Overview: motion-compensated coding n Motion-compensated prediction n Motion-compensated hybrid coding n Power spectral density of the motion-compensated prediction error n Rate-distortion analysis n Loop filter n Motion compensation with sub-pel accuracy Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 1 Motion-compensated prediction previous frame stationary Dt background current frame x time t y moving object æ dx ö „Displacement vector“ ç d ÷ shifted è y ø object Prediction for the luminance signal S(x,y,t) within the moving object: ˆ S (x, y,t) = S(x - dx , y - dy ,t - Dt) Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 2 1 Motion-compensated prediction: example Previous frame Current frame Current frame with Motion-compensated displacement vectors Prediction error Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 3 Motion-compensated hybrid coder Control „side information“ Video Channel signal Intraframe S e DCT coder - Intraframe Decoder Motion compensated predictor Decoder Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 4 2 Motion-compensated hybrid decoder Channel reconstructed Intraframe video signal Decoder Motion compensated predictor side information Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 5 Model for performance analysis of an MCP hybrid coder luminance signal S e R-D optimal intraframe - encoder intraframe decoder e‘ motion s‘ compensated predictor displacement estimate æ dx ö æ D xö true displacement ç ÷ + ç ÷ displacement error è dyø è D yø Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 6 3 Analysis of the motion-compensated prediction error Motion-compensated signal c(x) = s(x - Dx )- n(x) Prediction error Previous e(x) = s(x)- c(x) frame = s(x)- s(x - Dx )+ n(x) x c(x) s(x) Current frame Displacement dx Displacement error Dx x Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 7 Analysis of m.c. prediction error (cont.) n Motion-compensated prediction error e(x)= s(x)-c(x)=s(x)-s(x-Dx)+n(x)=(d(x)-d(x-Dx ))*s(x)+n(x) n Power spectrum of prediction error, assuming constant displacement error D x, statistical independence of s and n - jwD x jwD x F ee(w) = F ss(w)(1 - e )(1 - e )+ Fnn (w ) = 2F (w ) 1- Re e- jwD x + F (w ) ss ( { }) nn n Random displacement error D x, statistically independent from s, n F ( ) = E 2F ( ) 1 - Re e- jwD x + F ( ) ee w { ss w ( { }) nn w } = 2F ( ) 1- Re E e- jwD x + F ( ) ss w ( { { }}) nn w = 2Fss (w )(1- Re{P(w )})+ Fnn (w) Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 8 4 Analysis of m.c. prediction error (cont.) - jw D n What is P(w)? P(w ) = E{e x } ¥ - jw D = p (D )e dD = F p D x ò D x { D x ( )} -¥ Fourier transform of the displacement error pdf!! n Same as characteristic function of displacement error, except for sign n Extension to 2-d F ee (w x ,w y ) = 2F ss (w x ,w y )(1- Re{P(w x ,w y )})+ F nn (w x ,w y ) Fourier transform of the noise spectrum displacement error pdf power spectrum of p(D , D ) luminance signal x y Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 9 Power spectrum of motion-compensated prediction error 0 p frequency w x Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 10 5 R-D function for MCP with integer-pixel accuracy Minimum bit-rate for given SNR T n (D x , D y ) assumed uniformly distributed between 1 D = ± pel x 2 1 D = ± line ~0.7 bpp y 2 n Gaussian signal model 3 2 2 - 2 æ w x +w y ö Fss (w x ,w y ) = Aç 1+ 2 ÷ è w 0 ø n Typical parameters for CIF resolution (352 x 288 pixels) Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 11 Required accuracy of motion compensation n p(D x , D y ) isotropic Gaussian pdf with variance s 2 3 - 2 2 2 æ wx +w y ö n Fss (wx ,wy ) = Aç 1+ 2 ÷ è w0 ø n Typical parameters for CIF resolution (352 x 288 pixels) n Minimum bit-rate for SNR = 30 dB Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 12 6 Model of MCP hybrid coder with loop filter e R-D optimal intraframe luminance - encoder signal S intraframe decoder spatial filter F motion compensated predictor displacement estimate æ dx ö æ D x ö true displacement ç ÷ + ç ÷ displacement error è d y ø è D y ø Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 13 Motion-compensated prediction error with loop filter Motion-compensated signal Prediction error c(x) = s(x - Dx )- n(x) e(x) = s(x)- f(x)*c(x) = s(x)- f(x)*s(x - Dx)+ f(x)*n(x) Previous frame Impulse response of loop filter x c(x) s(x) Current frame Displacement dx Displacement error Dx x Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 14 7 Spatial power spectrum of m.c. prediction error with loop filter 2 2 Fee(L) = Fss(L)(1+| F(L)| -2Re{F(L)P(L)})+Fnn(L)| F(L)| P(L) 2 -D Fourier transform of displacement error pdf F(L) 2 -D Fourier transform of f (x, y) Fuu spatial spectral power density of signal u L vector of spatial frequencies (w x ,w y ) n(x, y) noise Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 15 Optimum loop filter n Wiener filter minimizes prediction error variance F (L) F (L) = P*(L) × ss opt 12 3 F L + F L 1ss4 (4 4) 2 4 nn4 (43 ) accounts for accuracy of accounts for noise motion estimation n To determine Wiener filter from measurements: cross spectrum between s(x,y) and the motion-compensated signal F (L) ˆ ˆ sc c(x, y) = r(x - d x , y - d y ) Fopt (L) = F cc (L) Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 16 8 Required accuracy of motion compensation with loop filter 2 n p(D x , D y ) isotropic Gaussian pdf with variance s n Minimum bit-rate for SNR = 30 dB ~0.8 bpp Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 17 Experimental evaluation of sub-pixel motion compensation n ITU-R 601 TV signals, 13.5 MHz sampling rate, interlaced, blockwise motion compensation with blocksize16x16 Zoom Voiture Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 18 9 Influence of noise on the performance of MCP Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 19 Motion Compensation Performance in H.263 500 400 Intra mode only 300 Integer-pel accuracy Bit Rate [kbps] 200 1/2-pel 100 accuracy 0 24 30 36 Simulation details: PSNR [dB] Foreman, QCIF, SKIP=2 Q=4,5,7,10,15,25 Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 20 10 Summary: motion-compensated coding n Motion-compensated prediction exploits similarity of successive frames of a video sequence. n Hybrid coder combines motion compensation and spatial 2D coding. n Power spectral density of motion-compensated prediction error is flat. n Loop filter improves the prediction. n Maximum gain by motion compensation with integer-pel accuracy ~0.8 bit/sample. n Sub-pixel accuracy of motion compensation can improve prediction n “Noise” in the image signal limits the accuracy of motion compensation. Bernd Girod: EE368b Image and Video Compression Motion Compensation no. 21 11.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us