Monochloramine Decay in Model and Distribution System Waters

Monochloramine Decay in Model and Distribution System Waters

Wat. Res. Vol. 35, No. 7, pp. 1766–1776, 2001 # 2001 Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S0043-1354(00)00406-1 0043-1354/01/$ - see front matter MONOCHLORAMINE DECAY IN MODEL AND DISTRIBUTION SYSTEM WATERS PETER J. VIKESLANDy, KENAN OZEKINz and RICHARD L. VALENTINE* Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242, USA (First received 1 January 2000; accepted in revised form 1 July 2000) Abstract}Chloramines have long been used to provide a disinfecting residual in distribution systems where it is difficult to maintain a free chlorine residual or where disinfection by-product (DBP) formation is of concern. While chloramines are generally considered less reactive than free chlorine, they are inherently unstable even in the absence of reactive substances. These reactions, often referred to as ‘‘auto- decomposition’’, always occur and hence define the maximum stability of monochloramine in water. The effect of additional reactive material must be measured relative to this basic loss process. A thorough understanding of the auto-decomposition reactions is fundamental to the development of mechanisms that account for reactions with additional substances and to the ultimate formation of DBPs. A kinetic model describing auto-decomposition was recently developed. This model is based on studies of isolated individual reactions and on observations of the reactive ammonia-chlorine system as a whole. The work presented here validates and extends this model for use in waters typical of those encountered in distribution systems and under realistic chloramination conditions. The effect of carbonate and temperature on auto-decomposition is discussed. The influence of bromide and nitrite at representative monochloramine concentrations is also examined, and additional reactions to account for their influence on monochloramine decay are presented to demonstrate the ability of the model to incorporate inorganic demand pathways that occur parallel to auto-decomposition. # 2001 Elsevier Science Ltd. All rights reserved Key words}bromide, carbonate, disinfection, monochloramine, nitrite INTRODUCTION Chloramines are nonetheless inherently unstable at Chloramine disinfectants are produced by substitu- neutral pH values, even without the presence of tion reactions between free chlorine and ammonia in reactive inorganic or organic substances, and auto- a process called chloramination. Strictly speaking, decompose by a complex set of reactions that ultimately result in the oxidation of ammonia and the chloramines include monochloramine (NH2Cl), the reduction of active chlorine (Jafvert and Valen- dichloramine (NHCl2), and trichloramine (NCl3). However, monochloramine is the predominant tine, 1992). The rate of these reactions depends on the chloramine species under the conditions typically solution pH as well as on the ratio of chlorine to found in drinking water treatment. Monochloramine ammonia nitrogen (Cl/N ratio). In general, the larger has the same oxidizing capacity as free chlorine on a the Cl/N ratio the faster the oxidation of ammonia. chlorine atom basis, but it is a weaker disinfectant To meet disinfection requirements and to minimize (Wolfe et al., 1984). It is often used when free DBP formation it is desirable that the chloramine chlorine residuals are difficult to maintain or when residual be as stable as possible. Unfortunately, in they lead to excessive disinfection by-product (DBP) spite of the long history of chloramine use, the fate of formation. chloramines in distribution systems and the char- acteristics and processes that influence their stability are largely unknown. A model to predict chloramine decay in the water phase has been proposed (Jafvert *Author to whom all correpondence should be addressed. and Valentine, 1992; Ozekin et al., 1996). The model Tel.: 319-335-5653; fax: 319-335-5660; e-mail: richard- takes into account the complex series of reactions [email protected] that ammonia and chlorine undergo in aqueous y Present address: Johns Hopkins University; Department of solution, and it can predict chloramine auto-decom- Geography and Environmental Engineering; Baltimore, position for a wide range of reaction conditions. MD 21218, USA. z Present address: American Water Works Association However, the validity of the model was not tested Research Foundation; 6666 W. Quincy Avenue; Denver, under realistic chloramination conditions. Specifi- CO 80235, USA. cally, the model and rate coefficients were determined 1766 Monochloramine decay in model and distribution system waters 1767 using very high monochloramine concentrations in ever, the overall rate of chloramine loss for neutral phosphate-buffered water. Furthermore, all previous pH values and above is primarily limited by the rate work was conducted at 258C and the rate coefficients of formation of dichloramine (Jafvert and Valentine, are therefore probably not applicable to waters with 1992). Dichloramine formation occurs through both either lower or higher temperatures. monochloramine hydrolysis (reactions 1.2 and 1.3) The present study was undertaken to evaluate the and by a general acid catalyzed monochloramine appropriateness of this model under more realistic disproportionation reaction (reaction 1.5). The re- water quality and chloramination conditions. Studies lative importance of these pathways on the formation were conducted in carbonate-buffered waters. Car- of dichloramine is dependent on factors like pH, bonate provides not only buffering capacity but is ionic strength, temperature, and alkalinity. Once also hypothesized to catalyze monochloramine dichloramine forms it decomposes via a series of decomposition (Valentine and Jafvert, 1988). An rapid redox reactions. The products of these reac- additional objective was to determine and incorpo- tions are primarily ammonia, chloride, and nitrogen rate temperature dependencies of important reac- gas, however, nitrate also forms under some condi- tions. Finally, the general utility and validity of the tions (Vikesland et al., 1998). model was demonstrated by extending it to include General acid-catalyzed monochloramine dispro- reactions involving bromide and nitrite, two inor- portionation (reaction 1.5) is of interest since it ganic species that can exert or catalyze a monochlor- suggests that a variety of proton-donating species amine demand in distribution system waters. (e.g., general acid catalysts) can act to accelerate monochloramine decay: MONOCHLORAMINE AUTO-DECOMPOSITION kd NH2Cl þ NH2Cl ! NHCl2þNH3 ðreaction 1:5Þ MODEL FORMULATION P where kd ¼ ki½HAi and ki is the specific rate The monochloramine auto-decomposition model coefficient for the ith proton-donating species HAi developed by Valentine and co-workers (Jafvert and (this includes hydrogen ion). Previous studies have Valentine, 1992; Ozekin et al., 1996) is shown in shown that acetic acid (Granstrom, 1954) as well as Table 1. This model only accounts for the auto- sulfate and phosphate (Valentine and Jafvert, 1988) decomposition of monochloramine. As such, it is the acts in this capacity. Using a linear free-energy starting point for the development of more compre- relationship (LFER), Valentine and Jafvert (1988) hensive reaction models that incorporate additional concluded that carbonate species also have the loss pathways. The model includes four principle potential to act as catalysts. For carbonate-buffered reaction schemes: (1) substitution/hydrolysis reac- waters, the general acid-catalyzed rate coefficient kd tions involving HOCl and ammonia or the chlori- is hypothesized to have the following form: nated ammonia derivatives (reactions 1.1–1.4); (2) þ þ disproportionation reactions of the chloramine spe- kd ¼kH ½H þkH2CO3 ½H2CO3 cies (reactions 1.5–1.6); (3) redox reactions that occur À þ kHCO ½HCO 1 in the absence of measurable levels of free chlorine 3 3 ð Þ 4 À2 À1 (reactions 1.7–1.10); and (4) equilibrium reactions where kHþ ð¼ 4 Â 10 M h Þ is the hydrogen-ion- involving the protonation/deprotonation of chlorine, specific rate coefficient (Granstrom, 1954), and ammonia, and the carbonate species (reactions 1.11– kH2CO3 and kHCO3 are the rate coefficients for catalysis 1.14). by carbonic acid and bicarbonate ion, respectively. As shown in Table 1, chloramine loss by auto- Using their LFER, Valentine and Jafvert (1988) 3 decomposition is a relatively complex process. How- estimated kH2CO3 and kHCO3 to be 2.7 Â 10 and Table 1. Monochloramine decay model developed by Jafvert and Valentine (1992) and modified by Ozekin et al. (1996) Reaction Rate coefficient/equilibrium constant (258C) References 10 À1 À1 1.1 HOCl+NH3 ! NH2Cl+H2O k1.1=1.5 Â 10 M h Morris and Isaac (1981) À2 À1 1.2 NH2Cl+H2O ! HOCl+NH3 k1.2=7.6 Â 10 h Morris and Isaac (1981) 6 À1 À1 1.3 HOCl+NH2Cl ! NHCl2+H2O k1.3=1.0 Â 10 M h Margerum et al. (1978) À3 À1 1.4 NHCl2+H2O ! HOCl+NH2Cl k1.4=2.3 Â 10 h Margerum et al. (1978) a 1.5 NH2Cl+NH2Cl ! NHCl2+NH3 kd This work 8 À2 À1 1.6 NHCl2+NH3 ! NH2Cl+NH2Cl k1.6=2.2 Â 10 M h Hand and Margerum (1983) 5 À1 À1 1.7 NHCl2+H2O ! I k1.7=4.0 Â 10 M h Jafvert and Valentine (1987) 8 À1 À1 1.8 I+NHCl2 ! HOCl+products k1.8=1.0 Â 10 M h Leao (1981) 7 À1 À1 1.9 I+NH2Cl ! products k1.9=3.0 Â 10 M h Leao (1981) À1 À1 1.10 NH2Cl+NHCl2 ! products k1.10=55.0 M h Leao (1981) 1.11 HOCl ! H++OClÀ pKa=7.5 Snoeyink and Jenkins (1980) þ þ 1.12 NH4 ! NH3 þ H pKa=9.3 Snoeyink and Jenkins (1980) À þ 1.13 H2CO3 ! HCO3 þ H pKa=6.3 Snoeyink and Jenkins (1980) À 2À þ 1.14 HCO3 ! CO3 þ H pKa=10.3 Snoeyink and Jenkins (1980) a þ 4 À2 À1 À2 À1 7 À2 À1 þ þ kd ¼ kH ½H þkH2 CO3 ½H2CO3þkHCO3 ½HCO3 where kH2 CO3 ¼ 4 Â 10 M h ; kHCO3 ¼ 800 M h ; kH ¼ 2:5 Â 10 M h and I is the unidentified monochloramine auto-decomposition intermediate.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us