
POLAND AVAILABLE AND FUTURE METHODS OF ENERGY STORAGE REPORT 2020 AVAILABLE AND FUTURE METHODS OF ENERGY STORAGE commissioned by WWF Poland Warsaw 2020 The report was prepared by the following team: Adrian Chmielewski, Institute of Vehicles and Construction Machinery Engineering, Warsaw University of Technology, Narbutta 84 Str., 02-524 Warsaw, Poland, [email protected] Jakub Kupecki, Department of High Temperature Electrochemical Processes (HiTEP), Institute of Power Engineering, Augustowka 36 Str., 02-981 Warsaw, Poland, [email protected] Łukasz Szabłowski, Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Str., 00–665, Warsaw, Poland, [email protected] Karol Jan Fijałkowski, Centre of New Technologies, University of Warsaw, Banacha 2c Str., 02-097 Warszawa, Poland, [email protected] Jakub Zawieska, Warsaw School of Economics, Institute of Infrastructure Transport and Mobility, Madalinskiego 6/8 Str., 02-513 Warsaw, Poland Krzysztof Bogdziński, Institute of Vehicles and Construction Machinery Engineering, Warsaw University of Technology, Narbutta 84 Str., 02-524 Warsaw, Poland, [email protected] The chapters were prepared by: • Executive Summary: Adrian Chmielewski, Łukasz Szabłowski, Krzysztof Bogdziński, Karol Jan Fijałkowski, Jakub Kupecki • List of definitions: Adrian Chmielewski, Łukasz Szabłowski, Krzysztof Bogdziński, Karol Jan Fijałkowski, Jakub Kupecki • List of abbereviations: Adrian Chmielewski, Łukasz Szabłowski, Karol Jan Fijałkowski, Jakub Kupecki • Preface: Tobiasz Adamczewski, Oskar Kulik, WWF Poland • Introduction: Adrian Chmielewski, Łukasz Szabłowski, Karol Jan Fijałkowski, Jakub Zawieska, Krzysztof Bogdziński, Jakub Kupecki • Pumped Hydroelectric Storage (PHS): Adrian Chmielewski, Łukasz Szabłowski, Karol Jan Fijałkowski • Compressed Air Energy Storage (CAES): Łukasz Szabłowski, Adrian Chmielewski • Liquid air Energy Storage (LAES): Łukasz Szabłowski • Flywheel Energy Storage (FES): Adrian Chmielewski, Karol Jan Fijałkowski • Chemical Energy Storage – hydrogen (H2): Jakub Kupecki, Karol Jan Fijałkowski, Adrian Chmielewski • Chemical Energy Storage – other PtG products: Jakub Kupecki, Karol Jan Fijałkowski • Galvanic cells – Battery Energy Storage (BES): Adrian Chmielewski, Karol Jan Fijałkowski, Jakub Zawieska • Flow Cells (VRFB): Adrian Chmielewski, Karol Jan Fijałkowski • Superconducting Magnetic Energy Storage (SMES): Adrian Chmielewski, Karol Jan Fijałkowski • Ultracaoacitors (UC): Adrian Chmielewski • Phase-change materials / Molten Salts (PCM / MS): Adrian Chmielewski, Karol Jan Fijałkowski • Heat Storage (low-medium-high temperature) and cold storage (TES): Łukasz Szabłowski • Summary: Adrian Chmielewski, Łukasz Szabłowski, Krzysztof Bogdziński, Karol Jan Fijałkowski, Jakub Kupecki • Bibliography: Adrian Chmielewski, Łukasz Szabłowski, Krzysztof Bogdziński, Karol Jan Fijałkowski, Jakub Zawieska, Jakub Kupecki Citation: Chmielewski A., Kupecki J., Szabłowski Ł., Fijałkowski K.J., Zawieska J., Bogdziński K., Kulik O. and Adamczewski T., Currently available and future methods of energy storage, WWF Poland, ISBN: 978-83-60757-56-7, 2020. This report may not be reproduced in whole or in part in any way without stating the title and publisher source as the copyright holder. © 2020 WWF All rights reserved. The copyright holder permits reproduction of this publication for educational and other non-commercial purposes without prior written consent, while the WWF does require written notice and the appropriate acknowledgement. It is prohibited to reproduce this publication for commercial purposes without obtaining prior written consent from the copyright holder. AVAILABLE AND FUTURE METHODS OF ENERGY STORAGE 2 TABLE OF CONTENTS Preface .......................................................................................................................... 6 Executive Summary ........................................................................................................ 7 List of definitions ......................................................................................................... 31 List of abbreviations (Alphabetical) .............................................................................. 34 1. Introduction .............................................................................................................. 37 1.1. European Policy ............................................................................................................................. 37 1.2. Overview of energy storage techniques ........................................................................................ 38 2. Pumped hydroelectric storage (PHS) ....................................................................... 48 2.1. Introduction .................................................................................................................................. 48 2.2. PHS development perspective and environmental impact .......................................................... 51 2.3. Raw material restrictions .............................................................................................................. 53 2.4. Technological barriers and scalability .......................................................................................... 53 2.5. Energy storage costs in PHS ......................................................................................................... 55 2.6. Main applications of PHS ............................................................................................................. 57 2.7. Conclusions: advantages, disadvantages and recommendations for PHS................................... 57 3. Compressed air energy storage (CAES) ..................................................................... 58 3.1. Introduction .................................................................................................................................. 58 3.2. CAES development perspective and environmental impact ....................................................... 60 3.3. Resource restrictions ................................................................................................................... 60 3.4. Technological barriers and scalability .......................................................................................... 61 3.5. Energy storage costs in CAES ....................................................................................................... 61 3.6. Main CAES applications .............................................................................................................. 62 3.7. Conclusions: advantages, disadvantages and recommendations for CAES ................................ 62 4. Liquid air energy storage (LAES) ..............................................................................64 4.1. Introduction .................................................................................................................................. 64 4.2. LAES development perspective and environmental impact ....................................................... 66 4.3. Resource restrictions .................................................................................................................... 67 4.4. Technological barriers and scalability .......................................................................................... 67 4.5. Energy storage costs in LAES ....................................................................................................... 67 4.6. Main LAES applications .............................................................................................................. 69 4.7. Conclusions: advantages, disadvantages and recommendations for LAES ................................ 69 5. Flywheel Energy Storage (FES) ................................................................................. 70 AVAILABLE AND FUTURE METHODS OF ENERGY STORAGE 3 5.1. Introduction .................................................................................................................................. 70 5.2. FES development perspective and environmental impact ........................................................... 71 5.3. Resource restrictions ..................................................................................................................... 73 5.4. Technological barriers and scalability .......................................................................................... 73 5.5. Energy storage costs in FES .......................................................................................................... 74 5.6. Main applications of FES .............................................................................................................. 75 5.7. Conclusions: advantages, disadvantages and recommendations for FES ................................... 75 6. Chemical energy storage – hydrogen (H2) ................................................................. 76 6.1. Introduction – hydrogen: production, storage, utilization .......................................................... 76 6.2. Development perspective and environmental impact ................................................................ 86 6.3. Resource restrictions ................................................................................................................... 90 6.4. Technological barriers and scalability ........................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages194 Page
-
File Size-