FINITE DIFFERENCES and INTERPOLATION FINITE DIFFERENCES • Finite Difference Operators

FINITE DIFFERENCES and INTERPOLATION FINITE DIFFERENCES • Finite Difference Operators

FINITE DIFFERENCES AND INTERPOLATION FINITE DIFFERENCES • Finite Difference Operators • Relation between the operators • Newton’s Forward Difference Interpolation Formula • Newton’s Backward Difference Interpolation Formula • Lagrange’s Interpolation Formula • Divided Differences • Newton’s divided difference formula Polynomial Interpolation Using Simple Operators Shift Operator Ef(x) = f(x + h) Forward Difference Op. Df(x) = f(x + h) - f(x) Backward Difference Op. f(x) = f(x) - f(x - h) Central Difference Op. f(x) = f(x + h/2) - f(x - h/2) Average Operator f(x) = {f(x + h/2) + f(x - h/2)}/2 Derivative Operator Df(x) = df(x)/dx Compound Operators • EDf(x) = E{Df(x)} = E{f(x+h) - f(x)} = Ef(x+h) - Ef(x) = f(x + 2h) - f(x + h) • Now try DEf(x) and see if the result is the same. Powers of operators • EEf(x) = E2f(x) = f(x + 2h) • EEE ... Ef(x) = Enf(x) = f(x + nh) E-1f(x) = f(x - h) E-nf(x) = f(x - nh) E1/2f(x) = f(x + h/2) E0f(x) = f(x) Relationships between operators Df(x) = f(x + h) - f(x) = Ef(x) - f(x) = (E - 1)f(x) Therefore, D = E - 1 Verify these relationships: = 1 - E-1 = E1/2 - E-1/2 = (E1/2 + E-1/2)/2 2 = D - Relationship between E and D • Ef(x) = f(x + h) = f(x) + hf (x) + h2 f (x)/2! + h3 f (x)/3! + . = f(x) + hD f(x) + h2/2! D2f(x) + h3/3! D3f(x) + . = (1 + hD + h2D2/2! + h3D3/3! + . .)f(x) ehD = f(x) Therefore, E = ehD • You can try to derive the following: = 2sinh(hD/2) = cosh(hD/2) Definition • Interpolation is the process of finding equations to approximate straight lines and curves that best fit given sets of data. 9 WHAT IS INTERPOLATION? Given (x0,y0), (x1,y1), …, (xn,yn), finding the value of ‘y’ at a value of ‘x’ in (x0, xn) is called interpolation. 10 NEWTON GREGORY FORWARD INTERPOLATION x - x 0 For convenience we put p = h and f0 = y0. Then we have p(p–1) p(p-- 1)(p 2) P(x + ph) = y + pDDD y +23 y + y + + 0 o 02! 0 3! 0 p(p--- 1)(p 2)L(p n+1) Dny n! 0 11 NEWTON GREGORY BACKWARD INTERPOLATION FORMULA xx Taking p = n , h we get the interpolation formula as: P(x +ph) = y + py + p(p 1) 2y + p(p 1)(p 2) 3y + ….. + n 0 n 2! n 3! n p (p 1) (p 2) (p n 1) n y n! n 12 Difference tables: An easy way to compute powers of either the forward or backward difference operator is to construct a difference table using a spread sheet. Here is the forward difference table for the data from the example. X F(X) D D2 D3 D4 0 0.00 0.21 0.09 0.06 0.04 1 0.21 0.30 0.15 0.10 -0.03 2 0.51 0.45 0.25 0.07 0.01 3 0.96 0.70 0.32 0.08 -0.02 4 1.66 1.02 0.40 0.06 0.02 5 2.68 1.42 0.46 0.08 6 4.10 1.88 0.54 7 5.98 2.42 8 8.40 Example Estimate f (3.17)from the data using Newton Forward Interpolation. x: 3.1 3.2 3.3 3.4 3.5 f(x): 0 0.6 1.0 1.2 1.3 14 Solution First let us form the difference table x y Dy D2y D3y D4y 3.1 0 0.6 3.2 0.6 - 0.2 0.4 0 3.3 1.0 - 0.2 0.1 0.2 0.1 3.4 1.2 -0.1 0.1 3.5 1.3 Here x0 = 3.1, x = 3.17, h = 0.1. 15 Example Estimate f(42) from the following data using newton backward interpolation. x: 20 25 30 35 40 45 f(x): 354 332 291 260 231 204 16 Solution The difference table is: x f f 2f 3f 4f 5f 20 354 - 22 25 332 - 19 - 41 29 30 291 10 -37 - 31 - 8 45 35 260 2 8 - 29 0 40 231 2 - 27 45 204 and p = - 0.6 Here xn = 45, h = 5, x = 42 17 Solution Newton backward formula is: p(p +1) 2 p(p+1)(p+2) 3 p(p +1)(p + 2)(p + 3) 4 P(x) = yn+pyn+ yn+ yn+ yn + 2! 3! 4! p(p +1)(p + 2)(p + 3)(p + 4) 5 yn 5! P(42)=204+(-0.6)(-27)+ (-0.6)(0.4) 2+ (-0.6)(0.40(1.4) 0+ (-0.6)(0.4)(1.4)(2.4) 8 + 2 6 24 (-0.6)(0.4)(1.4)(2.4)(3.4) 45 = 219.1430 120 Thus, f(42) = 219.143 18 NEWTONS DIVIDED DIFFERENCE • What is divided difference? f[x ] – f[x ] f[x ,x ] = 1 0 0 1 x1 – x0 f[x ,x ] – f[x ,x ] f[x0,x1,x2] = 1 2 0 1 x2 – x1 f[x1 ,x 2 - x k ]- f[x 0 ,...,x k-1 ] f[x0, x1, …, xk-1,xk] = xk0 - x for k = 3, 4, ….. n. These Ist, IInd... and kth order differences are denoted by Df, D2f, …, Dkf. • The divided difference interpolation polynomial is: P(x) = f(x0) + (x – x0) f [x0, x1] + (x –x0) (x – x1) f [x0, x1 , x2] + ……+ (x – x0)…..(x –xn-1) f[x0, x1, …, xn] 19 Example • For the data x: –1 0 2 5 f(x) :7 10 22 235 • Find the divided difference polynomial and estimate f(1). 20 Solution X f Df D2f D3f -1 7 3 0 10 1 6 2 2 22 13 71 5 235 P(x) = f(x0) + (x – x0) f[x0, x1] + (x – x0) ( x – x1) f [x0, x1, x2] + (x – x0) (x – x1) (x – x2) f [x0, x1, x2, x3] = 7 + (x +1) 3 + (x +1) (x – 0) 1 + (x +1) (x –0) (x – 2) 2 = 2x3 – x2 + 10 P (1) = 11 21 Use Newton’s divided-difference method to compute f(2) from the experimental data shown in the following table: 22 23 Lagrange Interpolation Lagrange Interpolating takes the following general formula: f N (x) 24 Linear Interpolation 25 Example Use a Lagrange interpolating polynomial of the first and second order to evaluate f(2) on the basis of the data: x0 = 1 f(x0) = 0 x1 = 4 f(x1) = 1.386294 x2 = 6 f(x2) = 1.791760 26 Quadratic Interpolation For 3 points of data 27 Example – cont. 28 Example – cont. 29.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us