Io: Volcanic Advection and Heat Flow Ashley Davies, JPL KISS Workshop – 16 October 2018 Jet Propulsion Laboratory California Institute of Technology This work was performed at the Jet Propulsion Laboratory – California Institute of Technology, under contract to NASA. © Caltech, 2018. 1 Io’s hot spots Observations Modes of volcanic activity Quantifying thermal emission Derivation of erupted volumes Heat flow analysis Questions 2 Volcanism on Io • The most extreme example of tidal heating in the Solar System • Powerful, highly voluminous eruptions • Resurfacing has erased all impact craters • Lithosphere is cold • Heat pipe volcanism (Moore, 2014) • Faults can be exploited (e.g., Leone et al., 2009) What is the composition of silicate lavas on Io? Io’s volcanism is dominated by low- Ultramafic viscosity, quite fluid lavas Basalt erupts at ~1150 °C (~1440 K) Komatiite erupts at ~1577 °C (~1850 K) Basalt The hotter the lava more interior heating a more liquid source area Voyager and Galileo data 90 60 ) 30 ° 0 Latitude ( Latitude -30 -60 -90 300 200 100 0 W. Longitude (°) Becker and Geissler (2005) Io from Earth: Keck AO data (4.7 µm) 90 60 ) 30 ° 0 Latitude ( Latitude -30 -60 -90 300 200 100 0 W. Longitude (°) Marchis et al. (2001) Icarus Io volcanoes ranked by thermal emission 90 60 ) 30 ° 0 Latitude ( Latitude -30 -60 -90 300 200 100 0 242 sources account for ~54% of Io’s heat flow (~70% from paterae) W. Longitude (°) Veeder et al. (2015) Icarus With outbursts = ~57% of Io’s heat flow Galileo NIMS and SSI observe volcanism on Io Pillan, 1997 Pillan flows at 9 m/pixel NIMS SSI Loki Patera surface temperature map from NIMS data Davies et al., 2001 Keszthelyi et al., 2001 Tvashtar Paterae, Feb 2000 Williams et al., 2001 Thermal map Radebaugh et al., 2004 Davies (2003) GRL, 30, 2133-2136. 8 Keszthelyi et al., 2001 100 km 10 Prometheus – tube-fed lava flows Main vent Surface flows Breakouts/skylights? NIMS: 24INPROMTH91A 11 Oct 1999 Leone et al. (2009) Icarus Average spatial resolution: 1.4 km/pixel Paterae – ubiquitous on Io – source of most endogenic heat – catalogued by Radebaugh et al., 2001 Veeder et al. (2011) Possible patera formation mechanism – Keszthelyi et al., 2004 Figure from Davies, 2007, Volcanism on Io, p244. Flow fields on Io range in size from ~600 km2 to >2.5 x 105 km2 Zamama Amirani Isum and Lei-Kung Fluctus Prometheus Loki Nina Nemea (W) 200 km Veeder et al. (2009) 14 Styles of volcanic activity on Io (1) - Volcanism is dominated by high-temperature, low viscosity silicates - Activity also driven by interactions with exsolving primary volatiles and with lithospheric volatiles during ascent (S, SO2) and on the surface - Many active paterae (e.g., Radebaugh et al., 2002; Lopes et al., 2004) - Extensive lava flow fields (e.g., see Veeder et al., 2009) - Active, overturning lava lakes (Janus Patera, Pele – e.g., Davies et al., 2001) and.... 15 Styles of volcanic activity on Io (cont’d) - At least one quiescently overturning lava lake (or lava “sea”) – Loki Patera (e.g., Rathbun et al., 2002; Davies, 2003; Matson et al., 2006; Rathbun and Spencer, 2006; de Kleer et al., 2017). - Powerful, dike-fed lava fountain episodes feeding voluminous flows (likely cause of “outbursts”) (See Davies, 1996) - Smaller and more frequent fountain events (de Kleer and de Pater, 2016a,b) - Secondary S, SO2 volcanism (see Prometheus plume papers: e.g., Kieffer et al., 2000) - Transient explosive activity (Davies et al., 2018, GRL) 16 Calculation of effusion rate (1) Amirani eruption rate (TADR) estimation Flow thickness in this case is not known Williams et al. (2001) measured post-eruption flow thickness at Pillan = ~10 m Davies et al. (2000) and Davies (2003) used NIMS 620 km2 new flows data to estimate eruption 23 breakouts volumetric rates 134 days TADR = 60-600 m3/s Keszthelyi et al., 2001 17 Veeder et al. (2012) Calculation of effusion rate (2) • From thermal emission: best with multi-wavelength infrared data • Galileo NIMS data (0.7 to 5.2 µm) • AO data (~2 to ~5 µm) • NIMS sensitive down to surfaces at ~200 K • Models of thermal emission – fit combination of black body curves to the data 1T, 2T fits (Davies et al., 1997, 2001, etc, etc.) Multiple temperature component models (Carr, 1986; Davies, 1996; Howell, 1997) Davies, 1996 - Derives areal coverage rate – variants utilise variable effusion rate, lava crust crack fraction, separate vent and flow units Cooling curves for lavas on Io 2000 Basalt, infinite half space 1800 Komatiite (1850 K) 1 m flow, cooling after solidification 1600 10 m flow, cooling after solidification 1400 Ultramafic, infinite half space 1200 Sulphur, infinite half space 1000 Basalt 800 (1470 K) Temperature,K 600 400 200 Sulphur (393 K) 0 1.E-01 1.E+01 1.E+03 1.E+05 1.E+07 1.E+09 1.E+11 Time, s Davies et al., 2005 20 3 Calculation of effusion rate (QF(NIMS), m /s) • Using NIMS data - Davies et al. (2000) • Calculate Frad • Determine eruption style (flows, lake, other) • If flows, calculate Fcond (= 20% Frad ; Johnson et al., 1995; Davies, 2003); Frad = Frad 퐹푡표푡 푄퐹(푁퐼푀푆) = 휌푙푎푣푎(퐿 + 푐푝 푇푒푟푢푝푡 − 푇푁퐼푀푆 ) ρlava = lava density L = latent heat of solidification Cp = specific heat capacity Terupt = lava eruption temperature TNIMS = minimum NIMS detection threshold (filled pixel = 180 K) IFM – generation of integrated thermal emission spectrum Active flow + Active vent in c A A i2n c A Q 1 (1 f ) i f i,crack + Q 1 i2 rad ( ),i 5 c2 /Tcrust c2 /Teruption rad e 1 ( ),i2 5 c2 / Tcrust i1 e 1 i21 e 1 Very High Cool crust Crack fraction Frad Lava fountains; Roiling “cauldron” After Davies (1996, 2007) 22 Temp/area model fits to NIMS data IFM dual-component fit to Pillan outburst 2-T, 2-A fit to Prometheus data, G1, June 1996 Davies et al., 2001, JGR Davies and Ennis, 2011, Icarus 2T fit 1T fit Interpretation – lava fountains feeding expanding flows Interpretation – active flows with insulated crusts Temp/area model fits to NIMS data IFM dual-component fit to Pele NIMS data, 1998 Variable spectra of Loki Patera in NIMS data – 2T fits Davies et al., 2001, JGR Matson et al., 2006, JGR; Davies et al., 2010, JVGR Interpretation – active, overturning lava lake – Interpretation – periodic, quiescently overturning lava lake Spectral signature similar to terrestrial lava lakes e.g., Rathbun et al., 2002; Davies, 2003; de Kleer et al., 2017 Effusion rate variability Zamama – Galileo NIMS data Effusion (instantaneous) volumetric rate estimated by balancing observed thermal emission from active flows against latent and sensible heat release of a volume of lava (see Davies, 2007; Harris, 2013, et al.). Davies and Ennis (2011) 25 AO-detected outbursts – Rarog and Heno Paterae 2000 2.2 µm 2013 Aug 15 Rarog P. 15 Aug. 1800 Rarog P. 20 Aug. 1600 Rarog P. 22 Aug. Heno P. 15 Aug. 1400 Heno P. 20 Aug. 1200 Heno P. 22 Aug. 1000 800 600 Spectral radiance, GW/µm radiance,Spectral 400 200 0 0.0 2.0 4.0 6.0 8.0 10.0 Wavelength, µm EffusionEruption rate rate de Pater et al. (2014a) Icarus 26 AO-detected outbursts – Rarog and Heno Paterae Effusion rate de Pater et al. (2014a) Duration Area covered Volume erupted* Peak Qf Qe (days) Eruption rate (km2) (km2) (m2) (m2) Heno Patera 7 1300 13 105 2 x 104 Rarog Patera 6 540 5 5 x 104 104 *assuming Pillan-like 10-m thick flows 27 Io’s eruptions take place on scales that dwarf contemporary eruptions on Earth. 20 years of activity at Prometheus and Kilauea Effusion rate comparisons – contemporary eruptions 1.E+06 Loki region 1990 Earth 1.E+05 Io Pillan 1.E+04 1 - s 3 1.E+03 Loa Mauna Pele 1.E+02 Prometheus Effusion rate, m rate, Effusion Kupaianaha 1.E+01 Kilauea No terrestrial equivalent No terrestrial 1.E+00 Pahoehoe Lava lake Open channel Io outburst flows flows 28 Io: volcanic IR thermal emission Davies et al. (2017) JVGR 1.E+05 2013 Aug 29 (1T fit) 2013 Aug 29 (2T fit) Rarog P. Aug 2013 Heno P. Aug 2013 1.E+04 Fountains Surt Surt 2001 Outburst 1990 Outburst 1996 1.E+03 Loki Patera: 2 Tvashtar AO 1 Pele “Quiescent” 2 lava lake Isum 1 Loki Patera - 3 1.E+02 1 4 Janus Patera Tupan Patera 6 Active lava lakes Prometheus 1.E+01 Pillan 97-99 Culann Small fountain event? Maui Zamama 1.E+00 Old flows and Flows with Amirani inactive lakes insulating crusts Monan µm radiant flux, GW µm GW flux, radiant µm Hi'iaka - 5 1.E-01 Sigurd Gish Bar Patera Zal Altjirra 1.E-02 Malik Arinna Fluctus 5 µm = 2 µm 1.E-03 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 2-µm radiant flux, GW µm-1 After Davies, Keszthelyi and Harris (2010) Lava fountains Lava lakes Loki Patera After Davies, Keszthelyi and Harris (2010) JVGR Style of volcanic activity and derivation of Terupt Credit: Katia Kraft Credit: USGS Davies et al. (2018) GRL Credit: Olivier Grunewald/Boston.com Credit: Robert Citron (Smithsonian Institution) Post-Galileo view of Io’s volcanism Davies (2007) Volcanism on Io, p289 Heat Flow – follow-up 34 Heat flow from Io’s volcanoes: 250 sources Io’s global heat flow: 1.05 ± 0.1 x 1014 W (Veeder et al., 1994, 2012) Other thermal sources Unaccounted for = 46% Dark-floored Paterae “Hot spot” total = 54% Data from Veeder et al.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages45 Page
-
File Size-