Mathematical Tripos: IA Vector Calculus Contents

Mathematical Tripos: IA Vector Calculus Contents

Mathematical Tripos: IA Vector Calculus Contents 0 Introduction i 0.1 Schedule . i 0.2 Lectures . i 0.3 Printed Notes . ii 0.4 Examples Sheets . iii 0.5 Previous Comments, Comments on Comments and Style of Lectures. iii 0.6 Books ................................................... iv 0.7 Revision . iv 0.7.1 Vectors . iv 3 0.7.2 Cylindrical polar co-ordinates (ρ, φ, z) in R . ......................... vi 3 0.7.3 Spherical polar co-ordinates (r, θ, φ) in R ............................ vi 0.7.4 Determinants. vi 1 Partial Differentiation 1 1.1 Scalar Functions of One Variable . 1 1.1.1 Limits . 1 1.1.2 Continuity . 1 1.1.3 Differentiability . 1 1.1.4 Taylor’s Theorem . 2 1.2 Functions of Several Variables . 2 1.2.1 Limits . 3 1.2.2 Continuity . 3 1.3 Derivatives of Vector Functions of One Variable . 4 1.3.1 Example . 4 1.4 Partial Derivatives . 4 1.4.1 Definition . 5 1.4.2 Examples . 5 1.4.3 Directional Derivatives . 7 1.5 Differentiability . 7 1.5.1 Scalar Functions of Two Variables . 7 1.5.2 Functions of Several Variables . 8 1.5.3 Properties of Differentiable Functions . 9 1.6 The Chain Rule and Change of Variables . 9 m m 1.6.1 The Chain Rule for x : R → R and f : R → R ....................... 9 ` m m 1.6.2 The Chain Rule for x : R → R and f : R → R ...................... 11 ` m m n 1.6.3 The Chain Rule for x : R → R and f : R → R ...................... 12 Mathematical Tripos: IA Vector Calculus a c [email protected], Lent 2000 1.6.4 The Matrix Form of the Chain Rule . 12 1.6.5 Change of Variables . 12 1.7 The Gradient of a Scalar Field . 14 1.7.1 The Gradient is a Vector . 15 1.7.2 Directional Derivatives Revisited . 16 1.8 Partial Derivatives of Higher Order . 17 1.8.1 A Sufficient Condition for the Equality of Mixed Partial Derivatives . 18 1.8.2 Change of Variables: Example . 18 1.9 Taylor’s Theorem . 19 2 Curves and Surfaces 22 2.1 Curves . 22 2.1.1 The Length of a Simple Curve . 24 2.1.2 The Arc Length . 25 2.1.3 The Tangent . 26 2.1.4 The Osculating Plane . 26 2.1.5 The Serret-Frenet Equations . 27 2.2 Surfaces . 30 2.2.1 Representations . 30 2.2.2 Normals . 30 2.2.3 Definitions . 33 2.3 Critical Points or Stationary Points . 34 2.3.1 Definitions . 34 2.3.2 Functions of Two Variables . 35 2.3.3 Maximum, Minimum or Saddle? . 38 3 Line Integrals and Exact Differentials 41 3.1 The Riemann Integral . 41 3.2 Line Integrals . 42 3.2.1 Line Integrals of Scalar Functions . 42 3.2.2 Line Integrals of Vector Functions . 44 3.3 Differentials . 46 3.3.1 Interpretations . 47 3.3.2 Properties . 48 3.3.3 Exact Differentials . 48 3.3.4 Solution of Differential Equations . 51 3.4 Line Integrals of Exact Differentials . 52 3.4.1 Conservative Fields . 53 3.5 Non Simply Connected Domains . 55 Mathematical Tripos: IA Vector Calculus b c [email protected], Lent 2000 4 Multiple Integrals 56 4.1 Double Integrals (Area Integrals) . 56 4.1.1 Evaluation by Successive Integration . 56 4.2 Triple Integrals (Volume Integrals) . 59 4.2.1 Evaluation . 59 4.3 Jacobians and Change of Variables . 60 4.3.1 Jacobians . 61 4.3.2 Chain Rule for Jacobians . 62 4.3.3 Change of Variable in Multiple Integrals . 63 4.4 Surface Integrals . 69 4.4.1 Surfaces . 69 4.4.2 Evaluation of Surface Integrals . 71 4.4.3 Flux . 73 4.5 Unlectured Worked Exercise: Examples Sheet 2, Question 18. 73 5 Vector Differential Operators 75 5.1 Revision of Gradient . 75 5.1.1 Summary of Properties . 75 5.2 Divergence . 76 5.2.1 Divergence in Cartesian Co-ordinates . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    139 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us