SYNTHESIS OF POLYMERS AND POLYMER BRUSHES THROUGH RAFT POLYMERIZATION VIA FLOW CHEMISTRY by PIAORAN YE Submitted in partial fulfillment of the requirements for the degree of Master of Science Macromolecular Science & Engineering CASE WESTERN RESERVE UNIVERSITY May, 2017 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Piaoran Ye candidate for the degree of Master of Science*. Committee Chair Dr. Rigoberto C. Advincula Committee Member Dr. Lei Zhu Committee Member Dr. Jon Pokorski Date of Defense 03/31/2017 *We also certify that written approval has been obtained for any proprietary material contained therein. ii List of Contents List of Contents ............................................................................................................. iii List of Tables .................................................................................................................. v List of Figures ............................................................................................................... vi Acknowledgement ........................................................................................................ x Abstract ........................................................................................................................ xi Chapter One Introduction ............................................................................................ 1 1.1 Controlled radical polymerization ...................................................................... 1 1.2 Synthesis of polymer brushes via CRP ................................................................ 5 1.3 Polymerization in continuous system ............................................................... 17 1.4 “graft from” or “graft onto” strategy in continuous system ............................. 21 1.5 Objective .......................................................................................................... 26 References .............................................................................................................. 28 Chapter Two Highly-Efficient RAFT Polymerization in Ethanol/Water via Flow Chemistry .................................................................................................................................... 42 iii 2.1 Experimental section ........................................................................................ 42 2.2 Results and discussion ...................................................................................... 46 References .............................................................................................................. 61 Chapter Three Continuous Fabrication of Polymer Brushes Grafted Silica Microparticles and Block Copolymers ................................................................................................ 65 3.1 Experimental section ........................................................................................ 65 3.2 Results and discussion ...................................................................................... 73 References .............................................................................................................. 91 Chapter Four Conclusions and Future Work .............................................................. 92 4.1 Conclusions ....................................................................................................... 92 4.2 Future work ...................................................................................................... 93 Bibliography ................................................................................................................ 95 iv List of Tables Table 2.1. Comparative RAFT polymerization in flow reactor and batch reactor ....... 48 Table 2.2. k" and half-life of ACVA in water at different temperatures ................... 53 Table 3.1. Molecular weight and molar mass dispersity of polymers cleaved from silica microparticles ............................................................................................................. 80 v List of Figures Figure 1.1. General Mechanism for ATRP11 .................................................................. 2 Figure 1.2. Mechanism of NMP16 ................................................................................. 3 Figure 1.3. General steps of the RAFT CTA processes occurring in dithioester-mediated radical polymerization22 ............................................................................................... 5 Figure 1.4. Example of “graft onto” and “graft from”30 ................................................ 6 Figure 1.5. Surface initiated RAFT polymerization via (A) initiator attachment (B) CTA attachment ................................................................................................................. 12 Figure 1.6. Silica-supported RAFT CTAs. The X can be H, OMe, OEt, or OSi54 ............ 14 Figure 1.7. Comparison between (A) conventional ATRP from surface and (B) novel “grafting-through” strategy56 ..................................................................................... 16 Figure 1.8. Scheme of a separation column used for modification84 ......................... 23 Figure 1.9. Scheme and mechanism of cerium catalyzed polymerization in the PDMS column. (A) Oxidation of the PDMS column. (B) Mechanism of free radical generation by cerium catalyst. (C) Polymerization of 2-acryl- amido-2-methylpropanesulfonic acid (AMPS)84 ..................................................................................................................... 24 vi Figure 2.1. Scheme of the instruments and experiment process ............................... 45 Figure 2.2. 1H NMR spectrum of 2-(((butylthio)carbonothioyl)thio)propanoic acid .. 47 Figure 2.3. FT-IR spectra of (A) PEGMEMA300, (B) raw product after polymerization (sample 5) and (C) purified product (sample 5) ....................................................................... 54 Figure 2.4. 1H NMR spectrum of (A) raw product before purification (sample 5), (B) all of the samples before purification ................................................................................. 55 Figure 2.5. 1H NMR spectrum of the polymers synthesized at 100 °C via flow reactor56 Figure 2.6. GPC trace of sample 10 ............................................................................ 60 Figure 3.1. Scheme of the closed circular flow system .............................................. 68 Figure 3.2. Scheme of the grafting poly(PEGMEMA)-b-PNIPAM from silica microparticles process ....................................................................................................................... 70 Figure 3.4. FT-IR spectrum of CTA modified silica microparticles and pristine silica microparticles ............................................................................................................. 75 Figure 3.5. FT-IR spectrum of silica microparticles grafted by poly(PEGMEMA) within different flow time ..................................................................................................... 76 Figure 3.6. Silica microparticles grafted by poly(PEGMEMA) within different flow time77 vii Figure 3.7. TGA results of (A) samples prepared within different flow time and (B) different monomer concentration ............................................................................................ 79 Figure 3.8. GPC traces for polymer brushes synthesized with (A) different flow time and (B) monomer concentration ....................................................................................... 80 Figure 3.9. SEM images of (A) pristine silica, (B) silica grafted by poly(PEGMEMA) within 3 h, (C) silica grafted by poly(PEGMEMA) with 0.5 h ..................................................... 82 Figure 3.10. FT-IR spectrum for (A) poly(PEGMEMA) (grafted witn 2.5 h)and poly(PEGMEMA)-b-PNIPAM, (B) zoom-in spectrum of the range for wavenumber between 1300 to 1400 cm-1 ...................................................................................................... 83 Figure 3.11. TGA results for poly(PEGMEMA) (grafted within 1 h) and poly(PEGMEMA)-b- PNIPAM ...................................................................................................................... 84 Figure 3.12. NMR spectrum of (A) cleaved poly(PEGMEMA) (grafted within 2.5 h), (B) cleaved poly(PEGMEMA)-b-PNIPAM .......................................................................... 85 Figure 3.13. GPC traces for cleaved poly(PEGMEMA) (grafted within 1 h) and poly(PEGMEMA)-b-PNIPAM ....................................................................................... 86 Figure 3.14. Static water contact angles of silica microparticles grafted by polymers under different conditions. (A) sample grafted by poly(PEGMEMA) with 0.24 M in 1.5 h. (B) viii sample grafted by poly(PEGMEMA) with 0.8 M in 0.5 h. (C) sample grafted by poly(PEGMEMA) with 0.8 M in 3 h. (D) sample grafted by poly(PEGMEMA)-b-PNIPAM tested at room temperature. (E) sample grafted by poly(PEGMEMA)-b-PNIPAM tested at 60 °C ........................................................................................................................... 88 Figure 3.15. Gelation happened in batch reactor ...................................................... 90 ix Acknowledgement First of all, I thank my advisor, Professor Rigoberto Advincula, for his guidance. During my
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages120 Page
-
File Size-