Pew Initiative on Food and Biotechnology Application of Biotechnology for Functional Foods © 2007 Pew Initiative on Food and Biotechnology. All rights reserved. No portion of this paper may be reproduced by any means, electronic or mechanical, without permission in writing from the publisher. This report was supported by a grant from The Pew Charitable Trusts to the University of Richmond. The opinions expressed in this report are those of the authors and do not necessarily reflect the views of The Pew Charitable Trusts or the University of Richmond. Contents Preface ..........................................................................................................................................................................5 3 Part 1: Applications of Biotechnology for Functional Foods ..................................................................7 Part 2: Legal and Regulatory Considerations Under Federal Law .....................................................37 Summary ...................................................................................................................................................................63 Selected References ..............................................................................................................................................65 Preface ince the earliest days of agricultural biotechnology development, scientists have envisioned harnessing the power of genetic engineering to enhance nutritional and other properties of foods for consumer benefit. The first 5 generation of agricultural biotechnology products to be commercialized, however, were more geared towards so-called input traits, genetic Smodifications that make insect, virus and weed control easier or more efficient. These first products have been rapidly adopted by U.S. farmers, and now account for the majority of soybeans, cotton and corn grown in the United States. Agricultural biotechnology innovations aimed directly towards consumers, sometimes collectively referred to as output traits, have been a longer time in development. As the technology advances, and we learn more about the genes and biochemical pathways that control those attributes that could offer more direct consumer benefits, the long-awaited promise of genetically engineered food with more direct consumer benefits moves closer to reality. One category of potential products aimed at consumers is those products with added health benefits, also known as “functional foods.” The term functional food means different things to different people, but generally refers to foods that provide health benefits beyond basic nutrition. This report looks at the potential to develop functional foods through the application of modern biotechnology. The first section describes some recent scientific advances that could lead to functional foods on grocery store shelves, and the second section analyzes the legal authorities that could govern the use of biotechnology-derived functional foods. The range of work being done on functional foods described in this report—from oils that product no trans fats or contain heart healthy omega-3 fatty acids, to cassava with increased protein content to help fight malnutrition in developing nations, to foods with enhanced levels of antioxidants—is impressive. This report is not intended to be an exhaustive catalog, however, but is rather a snapshot in time to give readers a sense of the kinds of products that may one day be available. It should also be noted that much of the work described here is still in preliminary stages, and may never make its way into consumer products for technical, economic or other reasons. The analysis of relevant statutory authorities suggests that there is ample legal authority to cover the kinds of functional foods currently being explored in laboratories, but that different authorities may come into play for different kinds of foods and that the application of different authorities can have significant consequences for product developers, food manufacturers and consumers. Different authorities impose different safety and labeling standards, have different requirements for regulatory review and clearance or approval, and could result in different levels of transparency to the public. The use of modern biotechnology to produce functional foods will not likely fundamentally challenge existing regulatory structures, but may challenge the boundaries of some regulatory classifications. The Pew Initiative on Food and Biotechnology’s first report, Harvest on the Horizon (2001), provided a broad overview of what could be the “next generation” of genetically engineered agricultural products. It is fitting that this, the last of the Initiative’s reports, turns again to look at a category of new products on the horizon. We would like to acknowledge the contributions of Joyce A. Nettleton, who created the scientific review used in the development of this paper; and of Edward L. Korwek, for the review of regulatory authorities that could govern future functional foods. Michael Fernandez Executive Director April 2007 6 Applications of Modern PART 1 Biotechnology to Functional Food Applications of Biotechnology 7 for Functional Foods I. BACKGROUND A. Functional Foods A relatively recent concept in the U.S. to describe the broad healthfulness of foods is the term “functional foods.” These foods are defined as foods that provide health benefits beyond basic nutrition (International Food Information Council 2004). The Food and Nutrition Board of the National Academy of Sciences described a functional food as, “any modified food or food ingredient that may provide a health benefit beyond that of the traditional nutrients it contains” (Food and Nutrition Board 1994). The original concept of functional foods originated in Japan from its development of a special seal to denote Foods for Specified Health Use (FOSHU). More than 270 foods have FOSHU status in Japan. Foods qualify as “functional foods” because they contain non-essential substances with potential health benefits. Examples of the diverse foods and their bioactive substances that are considered “functional foods” are: psyllium seeds (soluble fiber), soy foods (isoflavones), cranberry juice (proanthocyanidins), purple grape juice (resveratrol), tomatoes (lycopene), and green tea (catechins). The broad classification of functional foods carries some irony, as John Milner, Chief of the Nutrition Science Research Group at the National Cancer Institute noted, “It is unlikely that a non-functional food exists.” Bioactive components of functional foods may be increased or added to traditional foods through genetic engineering techniques. An example would be the high lycopene tomato, a genetically modified tomato with delayed ripening characteristics that is high in lycopene, which has potent antioxidant capabilities. This report focuses on biotechnology applications in functional and improved foods, using the National Academy of Sciences definition as a guideline. B. Applications of Biotechnology in Food Crops In 1990, the U.S.Food and Drug Administration (FDA) approved the first genetically engineered food ingredient for human consumption, the enzyme chymosin, used in cheese- making. It is estimated that today 70% or more of cheese made in the U.S. uses genetically engineered chymosin. The first genetically engineered food, the FlavrSavr™ tomato, was approved for human consumption in the U.S. in 1994. C. Transgenic Acreage Expands Steadily Seven million farmers in 18 countries now grow genetically engineered crops. Leading countries are the U.S., Argentina, Canada, Brazil, China, and South Africa. Cultivation of genetically engineered crops globally has expanded more than 10% per year for the past seven years, according to the International Service for the Acquisition of Agri-biotech Applications (ISAAA, James 2004). Such an expansion rate amounts to a 40-fold increase in the global area of transgenic crops from 1996 to 2003. Thus, in spite of continuing controversy, the technology continues to be adopted by farmers worldwide. ISAAA highlighted its key findings this way: In 2003, GM crops were grown in 18 countries with a combined population of 3.4 billion, living on six continents in the North and the South: Asia, Africa and Latin America, and North America, Europe and Oceania…. the absolute growth in GM crop area between 2002 and 2003 was almost the same in developing countries (4.4 million hectares) and industrial countries (4.6 million hectares) … the three most populous countries in Asia—China, India, and Indonesia, the three major economies of Latin America—Argentina, Brazil and Mexico, and the largest economy in Africa, South Africa, are all officially growing genetically engineered crops. The leading genetically engineered crops globally and in the U.S. are soy, maize (corn), cotton, and canola. In the U.S., transgenic virus-resistant papaya and squash are also cultivated. D. Agronomic Traits Prevail Research in plant biotechnology has focused primarily on agronomic traits—characteristics that improve resistance to pests, reduce the need for pesticides, and increase the ability of the plant to survive adverse growing conditions such as drought, soil salinity, and cold. Biotechnology traits developed and commercialized to date have largely focused on pest control (primarily Bt crops) or herbicide resistance. Many plant pests have proven either difficult or uneconomical to control with chemical treatment, traditional breeding, or other
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages78 Page
-
File Size-