
Prof. Friedrich Eisenbrand Question session: 27.10.10 Location: MA A3 31 Discussion: 03.11.10 Exercises Optimization Methods in Finance Fall 2010 Sheet 3 Exercises marked with (*) qualify for one bonus point, if correctly presented in the discussion session Exercise 3.1 (*) Consider the optimization problem 2 min x · 1 µ´ µ ´x 2 x 4 0 Ê x ¾ i) Analysis of primal problem. Give the feasible set, the optimal value and the optimal solution. 2 ii) Lagrangian and dual function. Plot the function x · 1 versus x. One the same plot, show the ; λ µ feasible set, optimal point and value, and plot the Lagrangian L´x versus x for a few positive £ λ ´ ; λ µ λ values of . Verify the lower bound property (p infx L x for 0). Derive and sketch the Lagrange dual function g. iii) Lagrange dual problem. State the dual problem, and verify that it is a concave maximization problem. Find the dual optimal value and dual optimum solution λ £ . Does strong duality hold? Exercise 3.2 (*) In this exercise, we want to show an example of a convex program, where strong duality fails. Consi- der the optimization problem min e x 2 x =y 0 ; µ ¾ ´x y D 2 f´ ; µ ¾ Ê j > g with D := x y y 0 . i) Verify that this is a convex optimization problem. Find the optimal value. £ ii) Give the Lagrange dual problem, and find the optimal solution λ £ and optimum value d of the dual program. What is the optimal duality gap? iii) Does Slater’s condition hold for this problem? Exercise 3.3 (*) In this exercise, we want to argue, why the RWMA (which can minimize convex functions over Σm m m f ;:::; g = fλ ¾ Ê j λ = ; λ g the simplex := conv e e ∑ 1 0 ) can also be used to optimize 1 m i=1 i i over general polytopes. Here, we are motivated, since the minimum variance portfolio problem is a N N N N ¾ Ê j = ; ; g convex optimization problem over the domain fx ∑ x 1 ∑ r x r x 0 which is ∑ = i=1 i i 1 i i N intersected with the half-space ∑ r x r. i=1 i i n m m ¾ Ê = f ;:::; g = f λ j λ = ; λ ;:::; λ g Let v ;:::; v and let Q : conv v v : ∑ v ∑ 1 0 . Define = 1 m 1 m i=1 i i i 1 i 1 m m m ´λ µ = λ ! Ê q : Σ ! Q with q ∑ x . Let f : Q be a convex function. Show that i=1 i i m Ê ´λ µ = ´ ´λ µµ i) The function g : Σ ! with g f q is convex. ii) One has λ µ = ´ µ min g´ min f x m Σ ¾ λ ¾ x Q N N N 2 ¾ Ê j g · iii) Describe ∑ \fx ∑ r x r as the convex hull of at most N N points and con- i=1 i i T j ¾ clude that the RWMA can be used to solve the portfolio optimization problem minfx Qx x N N N ¾ Ê j g g ∑ \fx ∑ r x r . i=1 i i Exercise 3.4 (*) n Ê ;:::; ! Ê Let D be a convex set and f0 fm : D be convex functions. Show that the set m f´ ; µ ¾ Ê ¢ Ê j 9 ¾ ´ µ ; ´ µ g A = u t x D : fi x ui f0 x t is convex. Exercise 3.5 (*) n ! Ê Ê Let f : D be a convex function for some convex domain D . Show that 2 µ ´ µ ¾ i) The function f ´x is convex, given that f x 0 for all x D. m¢n m · µ ¾ Ê ¾ Ê ii) f ´Ax b is convex for any A and b . n T n¢n ! Ê ´ µ = ¡ ¡ ¾ Ê ; Conclude that a function f : Ê with f x x Q x and Q Q 0 is convex..
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages2 Page
-
File Size-