Regularization and Simulation of Constrained Partial Differential

Regularization and Simulation of Constrained Partial Differential

Regularization and Simulation of Constrained Partial Differential Equations vorgelegt von Diplom-Mathematiker Robert Altmann aus Berlin Von der Fakult¨atII - Mathematik und Naturwissenschaften der Technischen Universit¨atBerlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat genehmigte Dissertation Promotionsausschuss: Vorsitzende: Prof. Dr. Noemi Kurt Berichter: Prof. Dr. Volker Mehrmann Berichterin: Prof. Dr. Caren Tischendorf Berichter: Prof. Dr. Alexander Ostermann Tag der wissenschaftlichen Aussprache: 29. 05. 2015 Berlin 2015 Contents Zusammenfassung . v Abstract . vii Published Papers. ix 1. Introduction . 1 Part A Preliminaries 5 2. Differential-algebraic Equations (DAEs) . 6 2.1. Index Concepts . 6 2.1.1. Differentiation Index. 7 2.1.2. Further Index Concepts. 8 2.2. High-index DAEs . 8 2.3. Index Reduction Techniques. 9 2.3.1. Index Reduction by Differentiation . 9 2.3.2. Minimal Extension . 9 3. Functional Analytic Tools . 11 3.1. Fundamentals . 11 3.1.1. Dual Operators and Riesz Representation Theorem . 11 3.1.2. Test Functions and Distributions . 12 3.1.3. Sobolev Spaces . 13 3.1.4. Traces . 14 3.1.5. Poincar´eInequality and Negative Norms . 15 3.1.6. Weak Convergence and Compactness . 17 3.2. Bochner Spaces . 17 3.3. Sobolev-Bochner Spaces . 20 3.3.1. Gelfand Triples . 20 3.3.2. Definition and Embeddings . 21 4. Abstract Differential Equations . 23 4.1. Nemytskii Mapping . 23 4.2. Operator ODEs . 24 4.2.1. First-order Equations . 25 4.2.2. Second-order Equations. 26 4.3. Operator DAEs . 27 i 5. Discretization Schemes . 29 5.1. Spatial Discretization . 29 5.1.1. Finite Element Spaces. 29 5.1.2. Finite Element Discretization . 31 5.1.3. Stability for Saddle Point Problems . 33 5.2. Time Integration . 34 5.2.1. Implicit Euler Scheme. 35 5.2.2. Schemes for Second-order Systems. 35 5.3. Discretization of Time-dependent PDEs . 36 5.3.1. Method of Lines. 36 5.3.2. Rothe Method . 37 Part B Regularization of Operator DAEs 41 6. Regularization of First-order Operator DAEs . 42 6.1. Linear Constraints . 43 6.1.1. Assumptions on B ................................ 43 6.1.2. Regularization . 45 6.1.3. Influence of Perturbations . 48 6.2. Nonlinear Constraints . 50 6.2.1. Assumptions on B ................................ 50 6.2.2. Regularization . 52 6.2.3. Influence of Perturbations . 53 6.3. Applications . 54 6.3.1. Navier-Stokes Equations . 55 6.3.2. Optimal Control of Fluid Flows . 56 6.3.3. Regularized Stefan Problem . 56 7. Regularization of Second-order Operator DAEs . 59 7.1. Equations of Motion in Elastodynamics . 59 7.1.1. Principle of Virtual Work . 59 7.1.2. Dirichlet Boundary Conditions . 61 7.1.3. Formulation as Operator DAE . 63 7.2. Extension and Regularization . 64 7.3. Existence Results and Well-posedness . 65 7.3.1. Homogeneous Problem . 65 7.3.2. Existence of the Lagrange Multiplier . 66 7.3.3. Well-posedness of the Saddle Point Problem . 67 7.4. Influence of Perturbations . 69 7.5. Applications in Flexible Multibody Dynamics . 71 Part C The Method of Lines 73 8. The Method of Lines for First-order Systems . 74 8.1. Preliminaries and Notation . 74 8.2. Linear Constraints . 75 8.2.1. Conforming Discretization . 76 ii 8.2.2. Nonconforming Discretization. 76 8.3. Nonlinear Constraints . 77 8.4. Application to Flow Equations . 78 8.4.1. Decomposition for Crouzeix-Raviart Elements . 80 8.4.2. Decomposition for Bernardi-Raugel Elements . 82 8.4.3. Further Elements . 83 8.4.4. Numerical Example . 84 9. The Method of Lines for Second-order Systems . 86 9.1. Recap and Notation . 86 9.2. Determination of the Index . 87 9.3. Commutativity . 88 Part D The Rothe Method 91 10. Convergence for First-order Systems . 92 10.1. Setting . 92 10.2. Temporal Discretization . 94 10.2.1. Existence of Solutions. 94 10.2.2. A Priori Estimates . 95 10.3. Global Approximations and Convergence. 97 10.3.1. Definition of U1,τ , U2,τ , and V2,τ ..................... 97 10.3.2. Definition of Λτ ................................ 98 10.3.3. Convergence Results. 99 10.4. Influence of Perturbations. 102 10.4.1. Error Analysis. 102 10.4.2. Spatial Discretization as Perturbation . 104 10.5. Nonlinear Constraints . 105 10.5.1. Temporal Discretization . 107 10.5.2. Convergence Results. 108 10.5.3. Influence of Perturbations . 111 11. Convergence for Second-order Systems . 113 11.1. Setting and Discretization. 113 11.2. Stability and Convergence. 115 11.2.1. Stability Estimate . 115 11.2.2. Definition of Global Approximations . 117 11.2.3. Passing to the Limit. 119 11.2.4. Lagrange Multiplier . 122 11.3. Influence of Perturbations. ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    146 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us