The Fourier Transform: Examples, Properties, Common Pairs the Fourier Transform: Examples, Properties, Common Pairs

The Fourier Transform: Examples, Properties, Common Pairs the Fourier Transform: Examples, Properties, Common Pairs

The Fourier Transform: Examples, Properties, Common Pairs The Fourier Transform: Examples, Properties, Common Pairs Magnitude and Phase Remember: complex numbers can be thought of as (real,imaginary) The Fourier Transform: or (magnitude,phase). Examples, Properties, Common Pairs 2 2 1/2 CS 450: Introduction to Digital Signal and Image Processing Magnitude: F = (F) + (F) | | < 1 (F)= = Phase: φ (F) = tan− (F) < Bryan Morse Real part How much of a cosine of that frequency you need BYU Computer Science Imaginary part How much of a sine of that frequency you need Magnitude Amplitude of combined cosine and sine Phase Relative proportions of sine and cosine The Fourier Transform: Examples, Properties, Common Pairs The Fourier Transform: Examples, Properties, Common Pairs Example: Fourier Transform of a Cosine Example: Fourier Transform of a Cosine ( ) = ( π ) f t cos 2 st Spatial Domain Frequency Domain ∞ i2πut F(u) = f (t) e− dt 1 1 Z−∞ cos(2πst) 2 δ(u s) + 2 δ(u + s) ∞ i2πut − = cos(2πst) e− dt 1 Z−∞ 1 ∞ = cos(2πst)[cos( 2πut) + i sin( 2πut)] dt 0.8 − − 0.5 Z−∞ 0.6 ∞ ∞ = cos(2πst) cos( 2πut) dt + i cos(2πst) sin( 2πut) dt 0.2 0.4 0.6 0.8 1 − − 0.4 Z−∞ Z−∞ -0.5 ∞ ∞ 0.2 = cos(2πst) cos(2πut) dt i cos(2πst) sin(2πut) dt − Z−∞ Z−∞ -1 -10 -5 5 10 0 except when u = s 0 for all u ± 1 1 = δ(u s) + δ(u + s) 2 − 2 The Fourier Transform: Examples, Properties, Common Pairs The Fourier Transform: Examples, Properties, Common Pairs Odd and Even Functions Sinusoids Even Odd Spatial Domain Frequency Domain f ( t) = f (t) f ( t) = f (t) − − − f (t) F(u) Symmetric Anti-symmetric Cosines Sines 1 cos(2πst) 2 [δ(u + s) + δ(u s)] Transform is real∗ Transform is imaginary∗ − sin(2πst) 1 i [δ(u + s) δ(u s)] 2 − − ∗ for real-valued signals The Fourier Transform: Examples, Properties, Common Pairs The Fourier Transform: Examples, Properties, Common Pairs Constant Functions Delta Functions Spatial Domain Frequency Domain Spatial Domain Frequency Domain f (t) F(u) f (t) F(u) 1 δ(u) δ(t) 1 a a δ(u) The Fourier Transform: Examples, Properties, Common Pairs The Fourier Transform: Examples, Properties, Common Pairs Square Pulse Square Pulse Spatial Domain Frequency Domain f (t) F(u) 1 if a/2 t a/2 ( π ) − ≤ ≤ sinc(aπu) = sin a u 0 otherwise aπu The Fourier Transform: Examples, Properties, Common Pairs The Fourier Transform: Examples, Properties, Common Pairs Triangle Comb Spatial Domain Frequency Domain Spatial Domain Frequency Domain f (t) F(u) f (t) F(u) 1 t if a t a − | | − ≤ ≤ sinc2(aπu) δ(t mod k) δ(u mod 1/k) 0 otherwise The Fourier Transform: Examples, Properties, Common Pairs The Fourier Transform: Examples, Properties, Common Pairs Gaussian Differentiation Spatial Domain Frequency Domain Spatial Domain Frequency Domain f (t) F(u) f (t) F(u) πt2 πu2 d e− e− dt 2πiu The Fourier Transform: Examples, Properties, Common Pairs The Fourier Transform: Examples, Properties, Common Pairs Some Common Fourier Transform Pairs More Common Fourier Transform Pairs Spatial Domain Frequency Domain Spatial Domain Frequency Domain f (t) F(u) f (t) F(u) Cosine cos(2πst) Deltas 1 [δ(u + s) + δ(u s)] 1 if a/2 t a/2 2 − Square − ≤ ≤ Sinc sinc(aπu) Sine sin(2πst) Deltas 1 i [δ(u + s) δ(u s)] 0 otherwise 2 − − Unit 1 Delta δ(u) 1 t if a t a 2 Triangle − | | − ≤ ≤ Sinc2 sinc (aπu) Constant a Delta aδ(u) 0 otherwise πt2 πu2 Delta δ(t) Unit 1 Gaussian e− Gaussian e− d Comb δ(t mod k) Comb δ(u mod 1/k) Differentiation dt Ramp 2πiu The Fourier Transform: Examples, Properties, Common Pairs The Fourier Transform: Examples, Properties, Common Pairs Properties: Notation Properties: Linearity Let denote the Fourier Transform: Adding two functions together adds their Fourier Transforms together: F F = (f ) (f + g) = (f ) + (g) F F F F 1 Multiplying a function by a scalar constant multiplies its Fourier Let − denote the Inverse Fourier Transform: F Transform by the same constant: 1 f = − (F) F (af ) = a (f ) F F The Fourier Transform: Examples, Properties, Common Pairs The Fourier Transform: Examples, Properties, Common Pairs Properties: Translation Change of Scale: Square Pulse Revisited Translating a function leaves the magnitude unchanged and adds a constant to the phase. If f = f (t a) 2 1 − F = (f ) 1 F 1 F = (f ) 2 F 2 then F = F | 2| | 1| φ (F ) = φ (F ) 2πua 2 1 − Intuition: magnitude tells you “how much”, phase tells you “where”. The Fourier Transform: Examples, Properties, Common Pairs Rayleigh’s Theorem Total “energy” (sum of squares) is the same in either domain: ∞ ∞ f (t) 2 dt = F(u) 2 du | | | | Z−∞ Z−∞.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us