Mutational Landscape of ALL: Next-Generation Sequencing-Based Mutations Scanning Strategy

Mutational Landscape of ALL: Next-Generation Sequencing-Based Mutations Scanning Strategy

Mutational Landscape of ALL: Next-Generation Sequencing-based Mutations Scanning Strategy 15 Mar 2019 Seung-Tae Lee Dept. of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea WHO 2016 classification B-lymphoblastic leukemia Key genetic subtypes of B-ALL Iacobucci et al. J Clin Oncol 2017 Philadelphia-like ALL • Adverse prognosis • Responsiveness to TKIs • Peak incidence in young adults Iacobucci et al. J Clin Oncol 2017 Common genetic features of Ph-like ALL • Cytokine receptor and tyrosine kinase signaling – CRLF2 mutation (~ 50%) – ABL-class tyrosine kinase gene rearrangement (12%) – JAK2 rearrangement (7%) – EPOR rearrangement (3~10%) – JAK-STAT activating mutation (11%) – Ras signaling (NRAS, KRAS, PTPN11, and NF1; 6%) – kinase alterations (FLT3, NTRK3, BLNK, TYK2, and PTK2B) • B-lymphoid transcription factor genes – IKZF1 deletion Kinase Gene Fusions Philadelphia-like ALL Roberts et al. New Eng J Med. 2014 CRLF2 deregulation • Mutation type – IGH-CRLF2 translocation – P2RY8-CRLF2 fusion (by focal deletion upstream of CRLF2) – CRLF2 point mutations (F232C) • Associated features – Common in Ph-like and Down syndrome–associated ALL – Additional alterations in JAK-STAT (JAK1, JAK2), Ras signaling genes, FLT3, IL7R, SH2B3 and TSLP – Poor prognosis (especially when with IKZF1 deletions) – Therapies targeting JAK-STAT, PI3K/mTOR, and BCL2 signaling show efficacy in preclincal models DUX4- and ERG-deregulated ALL • DUX4/IGH – DUX4 is not expressed in normal B cells – t(4;14)(q35;q32): truncated DUX4 is expressed when translocated to IGH – Truncated DUX4 interact with ERG and produce altered ERG • DUX4/ERG – Truncated ERG is expressed, which inhibits wild-type ERG transcriptional activity, and is transforming. – Favorable outcome, despite concomitant genetic alterations with poor outcomes (e.g. IKZF1, 40% of cases) – t(4;21)(q35;q22): not evident on karyotypic analysis but can be identified by sequencing MEF2D and ZNF384 gene fusions • MEF2D rearrangements – 3~4% of pediatric and 6~7% of adult ALLs – Rearranged to BCL9, HNRNPUL1, SS18, FOXJ2, CSF1R, and DAZAP1 – Older age of onset – Aberrant immunophenotype (CD10-, CD38+) – Poor outcome – Sensitivive to HDAC inhibitors (panobinostat) • ZNF384 rearrangements – Rearranged to EP300, CREBBP, TAF15, SYNRG, EWSR1, TCF3, and ARID1B – Often biphenotypic (B/myeloid) – Up-regulation of JAK/STAT pathway Mutations in relapsed ALL • CREBBP – ~20% of relapsed ALLs – Impair sensitivity to glucocorticoid therapy • NT5C2 – Resistance to purine analogs • MSH6 (mismatch repair) • NR3C1 (glucocorticoid receptor) • SETD2 (H3K36 trimethyltransferase) • KDM6 (lysine-specific demethylase) • MLL2 (epigenetic regulator) • Ras pathway mutations (e.g., KRAS, NRAS, FLT3, PTPN11) Gene mutations in B-ALL Pathway Gene Frequency (%) RAS signaling NRAS 17 KRAS 16 FLT3 7 PTPN11 5 NF1 3 B-cell differentiation PAX5 15 IKZF1 3 JAK/STAT signaling JAK1 2 JAK2 9 TP53/RB1 pathway TP53 4 RB1 1 CDKN2A/CDKN2B 1 Others TBL1XR1 2 ETV6 4 CREBBP 2 Unknown genes 9 Key genetic subtypes of T-ALL Translocation in T-ALL • 14q11 translocation (TCRA, TCRD, TCRB locus) – ~ 50% of T-ALLs – Juxtaposing transcription factor genes, such as TAL1, TAL2, LYL1, OLIG2, LMO1, LMO2, TLX1 (HOX11), TLX3 (HOX11L2), NKX2-1, NKX2-2, NKX2-5, HOXA genes, MYC, and MYB. • STIL-TAL1 fusion – Submicroscopic deletions fuses the promoter of STIL to TAL1 to induce an abnormal expression of TAL1 – ~25% of T-ALL patients • Cryptic rearrangements of ABL1 (NUP214-ABL1, EML1-ABL1, and ETV6-ABL1) – Possible candidate for TKI therapy Gene mutations in T-ALL Pathway Gene Frequency (%) Cell cycle defects CDKN2A/CDKN2B 96 TP53, RB, p27 4 Differentiation impairment TAL1, LMO1/2 39 LYL, LMO2 20 TLX1 7 TLX3 20 HOXA10/11 7 PICALM-MLLT10 5-10 MLL-fusions 4 TAL2 1 Proliferation and survival ABL1-fusions 8 NRAS 5 FLT3 5 LCK 1 ETV6-PBL2, ETV6-JAK2 1 PTEN 1 Self-renewal capacity NOTCH1, FBXW7 56 Pathways deregulated in T-ALL JAK-STAT Ras/PI3K/AKT NOTCH IL7R, JAK1, JAK3, STAT5B NRAS, KRAS, PTEN NOTCH1, FBXW7 Transcription Epigenetic mRNA/ribosome regulator PHF6, SUZ12, EZH2, TET2, CNOT3, RPL5, RPL10 H3F3A, KDM6A LEF1, WT1, BCL11B, ZEB2 Early T-cell Phenytpe (ETP)-ALL Coustan-Smith et al. Lancet 2009; Neumann et al. Blood 2013 Super-enhancer mutation in T-ALL Mansour et al. Science 2014 Goossens et al. Blood 2017 Germ-line predisposition to ALL Stieglitz et al. Therapeutic Advances in Hematology 2013 Clinical Utility of NGS Testing in Acute Leukemias • Diagnosis – Molecular classification (WHO 2016) Recurrent translocation Gene mutation – Precedent disorders Predisposing syndromes • Prognostic risk stratification • Eligibility for targeted therapy • Minimal residual disease (MRD) monitoring NGS panel for ALL (185 genes) B-ALL T-ALL NRAS, KRAS, FLT3, PTPN11, CDKN2A/B, TAL1, LMO1/2, PAX5, IKZF1, JAK2, CREBBP, TLX1, TLX3, NOTCH1, TP53, CDKN2A, etc. etc. ABL1, ABL2, CRLF2, CSF1R, EPOR, ETV6, JAK2, KMT2A, PDGFRB, STIL, TCF3 rearrangements Fusion genes 11 partner genes Validation for ALL panel • 83 patients with ALL – 33 children – 28 adolescent and young adult (AYA) – 22 adults • Classification – 71 B-ALL – 12 T-ALL • Bone marrow samples at initial diagnosis (or in relapse) – Blast > 50% Raw data Bioinformatics pipeline in Align & mapping (BWA) Severance Realignment (GATK) Hospital Normalized GATK Mutect, Varscan IGV Pindel Delly ExomeDepth Custom depth Insertion/ Transloc Genic CNVs Chromosomal Annovar VEP deletion) ation (crosscheck) CNVs SNVs (crosscheck & filtering) In silico Database, literature search (Alamut, HGMD, COSMIC) Oncogenic, likely oncogenic, VUS Correlation with clinical findings Consensus discussion Confirmation (Sanger sequencing, MLPA, microarray) Final report Copy number analysis by read-depth comparison B-ALL • 1.6 (113/71) mutations per patient • 24 patients (33.8%) did not have oncogenic mutation • 45/113 mutations (39.8%) are copy number variations T-ALL • 3.9 (47/12) mutations per patient • All patients had oncogenic mutations • 16/47 mutations (34.0%) are copy number variations A case with ETV6/RUNX1 translocation A case with hyperdiploidy Chromosomal CNVs Off-target analysis On-target DNA Probe Off-target DNA Wash-out ALL with hyperdiploidy Chromosomal CNVs identified by NGS #1 aneuploidy: -2,+6,+7,-8,-16 #29 5q+, 7p-, 9p-,13q-, 15q-, 21?, X? #2 interstitial deletion: 5,6,9,10,19 #30 -9, 17p13.3p11.2-, 1711.2q25.3+,21q11.2122.2+, -X #3 deletion: 1p22.3q21.1, 2q34q36.3, 5q21.1q32, 11q14.2q23.1 #31 5q33.2 interstitial deletion #4 +7p #32 9p21.3p13.2 deletion #5 +17,19,21 #33 11q+, Xq+ #6 deletion: 5q14.3q35.3, 12p13.33p12.2, duplication: 13q21.33q34 #34 hyperdiploidy: +4,+8, +14, +16,+17,+18, +21,+X #7 gain: 4q22q35, 5p15q14, loss: 5q21q35, 21q22, Xp11q28 #35 -7 #8 +12,+20 #36 -7 #9 9p- #37 high hyperdipolidy: 1q+, 4+, 6+, 9+,10+,14+, 17+, 18+, 21+ #10 13q+. 17q- #38 high hyperdipoidy: 3q+, 6+, 10+, 13p-, 14+17+, 21+, X+ #11 +14 #39 17q21q23 duplication #12 +5,+6,+8,+14,+17,+18,+21,+22 #40 6q-, Xq+ #13 12p+.12p- #41 gain: 4,6p,9, 14, 17, 18, 21, X #14 17p-, 22+ #42 ?7p-, +10,+14,+17,+21 #15 9p-,11p- #43 4q22.1q28.3-, 9p24.3p13.3-, 16p12.1q13- #16 +18,+21,+X #44 13q13.3q14.3 deletion #17 +6,+14,+21,+X #45 1q+,16q- #18 8q+,11q- #46 -7,-15,-21 #19 +8, 9p-, 20q-, 21+ #47 +6,+10,+14,+21,+X #20 +21(c?) #48 +4,+6,8q+,+14,+17,+18,+21,+X #21 1q+, 13q-, 17q+,21+ #49 7p-, 9q+, 12q interstitial deletion #22 High hyperdipoidy: +2,+4,+6,+10,+14,+21 #50 8p23p22-, 9p24q22- #23 9p-,12p- #51 gain: 4,6,8, 10, 11,14,18, 21,X #24 aneuploidy #52 loss: 12p13.3p13.1, 13q13q34, gain:17p13.3p13.2 #25 high hyperdiploidy: +4,+6,+8,+10,+17,+18,+21 #53 6q15q23.2- #26 1,13,16,21,22 #54 +8, 9p21p13.2-,+21 #27 8,14,17,21 #55 +21 +X #28 1q+, 4p-,8p-,17p-,17p+, 21++ #56 interstitial deletion: 2 6 Algorithms to detect translocations Probes directed to intronic breakpoints Case Age Type RT-PCR / RNA-Seq DNA algorithm (Delly) Detection of 6 51 B-ALL BCR-ABL1 Detected translocation by 16 15 B-ALL BCR-ABL1 Detected 17 25 B-ALL BCR-ABL1 Not detected DNA sequencing 26 52 B-ALL BCR-ABL1 Not detected 31 16 B-ALL BCR-ABL1 Detected 32 40 B-ALL BCR-ABL1 Detected 35 33 B-ALL BCR-ABL1 Detected • 17/27 (62.9%) 54 73 B-ALL BCR-ABL1 Detected transclocaitons could be 61 64 B-ALL BCR-ABL1 Not detected detected by DNA 62 76 B-ALL BCR-ABL1 Not detected 66 22 B-ALL BCR-ABL1 Not detected sequencing 68 46 B-ALL BCR-ABL1 Detected 69 73 B-ALL BCR-ABL1 Detected 70 72 B-ALL BCR-ABL1 Detected 101 58 B-ALL BCR-ABL1 Detected 5 10 B-ALL ETV6/RUNX1 Detected 3 4 B-ALL ETV6-RUNX1 Detected 13 8 B-ALL ETV6-RUNX1 Detected 25 3 B-ALL ETV6-RUNX1 Detected 28 3 B-ALL ETV6-RUNX1 Not detected 45 3 B-ALL ETV6-RUNX1 Not detected 46 5 B-ALL ETV6-RUNX1 Not detected 78 3 B-ALL ETV6-RUNX1 Detected 80 2 B-ALL ETV6-RUNX1 Detected 7 0 B-ALL KMT2A-AFF1 Detected 85 17 B-ALL P2Y8R-CRLF2 Not detected 84 5 B-ALL PAX5-CBFA2T3, P2RY8R-CRLF2 Not detected Difficulties in targeting introns • Breakpoints occur in introns which are difficult to capture due to repeat regions and variable GC content. Abel et al. J Mol Diagn. 2014 Detection of RNA fusion by NGS Detection of RNA fusion by NGS (Illumina TruSight, ArcherDx Fuxion Plex) ID HemaVision Chromosome Illumina TruSight RNA, ArcherDx Fusion Plex 1 b3a2, Major BCR-ABL1 46,XY,t(9;22)(q34;q11.2)[20] BCR-ABL1 rsa(22;9)(q11.23;q34.12) ABL1-BCR rsa(9;22)(q34.12;q11.23) 2 b3a2, Major BCR-ABL1 46,XY,t(9;22)(q34;q11.2)[20] BCR-ABL1 rsa(22;9)(q11.23;q34.12) ABL1-BCR rsa(9;22)(q34.12;q11.23) 3 b3a2, Major BCR-ABL1 46,XY,t(9;22)(q34;q11.2)[21] BCR-ABL1 rsa(22;9)(q11.23;q34.12) BCR-ABL1

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    51 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us