Infinite Calculus

Infinite Calculus

Calculus Name___________________________________ ID: 1 ©o E2I0f1i6f VKHuXt_aa uS_ohfhtswHaUr\eL XLLLVC[.G H tAllhlz Srniugvhmtds[ NrjegsEeMrlvdeadb. Assignment 5.4 2nd Derivative Test Date________________ Period____ For each problem, find all points of relative minima and maxima. 1) f (x) = -x3 + 3x2 - 2 2) f (x) = x4 - 2x2 - 1 3) f (x) = -x3 + 6x2 - 9x + 7 4) f (x) = x3 - 3x2 - 3 5) f (x) = -x3 - 9x2 - 24x - 21 6) f (x) = -x4 + 2x2 + 4 7) f (x) = x3 - 3x2 + 5 8) f (x) = x4 - 2x2 + 4 For each problem, find the x-coordinates of all points of inflection and find the open intervals where the function is concave up and concave down. 9) f (x) = -x3 + 4x2 - 2 10) f (x) = -x3 + x2 + 5x - 3 11) f (x) = -x4 + x3 + 3x2 - 3 12) f (x) = x4 - 3x3 + 5x + 1 2x 13) f (x) = x + 1 2 14) f (x) = x + 1 Worksheet by Kuta Software LLC ©a z2t0B1\6F lKyuKtXaV wSYoofItBwlabroeC TLHLsCv.I R bAZlolb yrFiCgDhBtPsV mrieLsXe[r_vGe-X1dO-.Y D EMeaNdZei ewTi_t^hO uIHnzftinnxiZtweg QCaallEcEuCl]ursx. For each problem, find all points of relative minima and maxima. 15) f (x) = -x4 + 2x2 + 3 For each problem, find the open intervals where the function is increasing and decreasing. 16) f (x) = -x4 + 4x2 dy For each problem, use implicit differentiation to find in terms of x and y. dx 17) 5x + y3 = 3y 18) 2y2 = 2x3 + 2y 19) 5y = 5x2 - 3y3 20) 2y = 2x2 - y3 21) -4y3 + 2xy = 5x3 22) 4x2 - 2y2 = 2x3y3 23) 2x = 2xy + 1 24) 2 = 3x - 2x3y2 For each problem, find the indicated derivative with respect to x. 4 3 ( ) 25) f (x) = -x + x + x Find f '' 26) f (x) = -3x3 Find f 4 27) f (x) = -x5 - x4 + 3x2 Find f ''' 28) f (x) = -4x2 Find f '' Differentiate each function with respect to x. 29) f (x) = (-5x3 - 3)(-3x3 + 4) 3 30) f (x) = x2 + 4 Worksheet by Kuta Software LLC ©Q e2\0Q1O6] EKXugt]aO ^SboPfdtVwraMrCes QL`LyCv.l r ZA]lalC mrqiDghh_tcsk SrWeKsxeSrRvCe-w2d-W.k L IMJaod`ex lwXiWtqho ^IrnzfZitn]iRtaeq gCvatlscIuflKuqsU. Answers to Assignment 5.4 2nd Derivative Test (ID: 1) 1) Relative minimum: (0, -2) 2) Relative minima: (-1, -2), (1, -2) Relative maximum: (2, 2) Relative maximum: (0, -1) 3) Relative minimum: (1, 3) 4) Relative minimum: (2, -7) 5) Relative minimum: (-4, -5) Relative maximum: (3, 7) Relative maximum: (0, -3) Relative maximum: (-2, -1) 6) Relative minimum: (0, 4) 7) Relative minimum: (2, 1) Relative maxima: (-1, 5), (1, 5) Relative maximum: (0, 5) 8) Relative minima: (-1, 3), (1, 3) 4 9) Inflection point at: x = Relative maximum: (0, 4) 3 4 4 Concave up: -¥, Concave down: , ¥ ( 3) (3 ) 1 10) Inflection point at: x = 3 1 1 Concave up: -¥, Concave down: , ¥ ( 3) (3 ) 1 11) Inflection points at: x = - , 1 2 1 1 Concave up: - , 1 Concave down: -¥, - , (1, ¥) ( 2 ) ( 2) 3 12) Inflection points at: x = 0, 2 3 3 Concave up: (-¥, 0), , ¥ Concave down: 0, (2 ) ( 2) 13) No inflection points exist. Concave up: (-¥, -1) Concave down: (-1, ¥) 14) No inflection points exist. Concave up: (-1, ¥) Concave down: (-¥, -1) 15) Relative minimum: (0, 3) Relative maxima: (-1, 4), (1, 4) 16) Increasing: (-¥, - 2), (0, 2) Decreasing: (- 2, 0), ( 2, ¥) dy 5 dy 3x2 dy 10x dy 4x 17) = - 18) = 19) = 20) = dx 3y2 - 3 dx 2y - 1 dx 5 + 9y2 dx 2 + 3y2 dy 15x2 - 2y dy 3x2y3 - 4x dy -y + 1 dy 3 - 6x2y2 21) = 22) = 23) = 24) = dx -12y2 + 2x dx -2y - 3y2x3 dx x dx 4x3y 2 ( ) 2 25) f ''(x) = -12x + 6x 26) f 4 (x) = 0 27) f '''(x) = -60x - 24x 28) f ''(x) = -8 29) f '(x) = (-5x3 - 3) × -9x2 + (-3x3 + 4) × -15x2 = 90x5 - 33x2 3 × 2x 30) f '(x) = - (x2 + 4)2 6x = - x4 + 8x2 + 16 Worksheet by Kuta Software LLC ©M g2d0w1x6q nKLu[tXag MSUoufTtIw\aerQee CLFLLC\.L P iAylwle _rhiEgZh]tJss jrve^sveXrMvKeY-d3p-.P v sM[aFdPeX Wwai]tZhL lIVnxfZiKnni]tqeQ YCTa]lMchutlWuQsu..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us