
16 Cygni: A key binary system for the study of the planet-star chemical connection Marcelo Tucci Maia [email protected] @TucciMTM Colaborators: Jorge Melendez IAG-USP iego !orenzo IAG-USP !orenzo S"ina IAG-USP #$% &' C%gni( A well known binary system 16 Cyg B has a Jupiter size planet M > 1#$ Cochram et al 1%%&' while A has no planets Both stars are solar twins born from the same cloud: -Di)erential abundances (*+#+1 de,' -alactic chemical evolution and birthplace e)ects minimized /eveal possible e)ects of planet formation or planet accretion on stellar surface composition Pre)ious #or* A B 0e) 123 $45+ ± 11 $&$1 6 11 7og g [de,] 8#5++ ± 0#+9 8#5$+ ± 0#+9 1:e;<3 [de,3 +#101 ± 0.++4 +#+$8 ± 0#++4 =1:e/H] A-B' = 0#+8& ± +#++4 Slope 1#44 ± +#&% × 1+A$ dex K−1 Ramirez et al. 2011 0ucci Maia et al# 9+18 /ocky Core ~ 1#$ – 6 Earth !asses Why reanalyse 16 Cygni? Better dataD C:<0 – C?EA(FG? ?ubaru B H(? / * 41 +++ / * 16+ +++ ?;N *&++ around 6++ nm ?;N * 1+++ around 6++ nm (o not found di)erent [Fe/H] between A and B: (eliyannis et al# 2+++H ?chuler et al# 9+11H Takeda et al# 9+11 The “new” surface stellar parameters A B A B A B 0e) [K3 $459 ± $&63 ± 0e) [K3 $45+ ± $&$1 ± 0e) [23 $416 ± $&63 ± $ $ 11 11 10 10 7og g 8#510 ± 8#360 ± 7og g 8#5++ ± 8#5$0 ± 7og g 8#991 ± 8#5$6 ± 1de,] +#+14 +#+14 1de,] +#+9 +#+9 1de,] +#+1 +#+1 1:e;<3 +#1+5 ± +#063 ± 1:e;<3 +#101 ± +#+$4 ± 1:e;<3 +#+%5 ± +#069 ± 1de,3 +#++8 +#++8 1de,3 +#++4 +#++4 1de,3 +#++& +#++& =1:e/H] (A-B' = +#+8+ ± 0#++8 =1:e/H] (A-B' = +#+8& ± 0#++4 =1:e/<3 A-B' = +#+51 ± +#++& 0ucci Maia et al# 9+1&I in prep 0ucci Maia et al# 9+18 Nissen et al# 9+1&I in prep using seismic surface gra.ities from Sil.a Aguirre et al# (9+1&' Fur method is consistent Age+ ,adius and Mass A B !;! 1#+6 ± 0#+1 1#+1 6 0#+1 This work sun !;! 1#+4 ± 0#+9 1#+8 6 0#+9 !etcalfe et al# sun 9+1$ /;/ 1#99 ± 0#+1 1#+% 6 0#+9 This Work sun /;/ 1#99% ± 0#++4 1.116 6 0#++6 !etcalfe et al# sun 9+1$ Age [-yr3 6#8 6 0#9 &#1 6 0#5 This work Age [-yr3 &#+ 6 0.1 &#+ 6 0.1 van Saders et al. 9+16 Abundance Cloc* 1K;!g3 1Al/!g3 A> 6#9 6 1#+ -yr A> 6#6 6 1#+ -yr B= 6#5 6 1#+ -yr B= 6#4 6 1#+ -yr 0ucci !aia et al# 9+16 ?pina et al# 9+16 Stellar parameters using automated EW measurement tools (AF?EEC A/C? ISPEC A B A B A B 0e) $4546 $&$&6 0e) $4556 $&41± 0e) $45+6 $&886 8 8 1% 18 $ 8 7og g 8#55+6 8#36+6 7og g 8#58+6 8#89+6 7og g 8#5$+6 8#5&+6 +#019 +#011 +#+46 +#+$8 +#01$ +#+13 1:e;<3 +#1+86 +#+$%6 1:e;<3 +#10&6 +#+$46 1:e;<3 +#1086 +#+8%6 +#++8 +#++8 +#+16 +#01& +#++6 +#++$ =1:e/<3 = +#+8$ ± +#++8 =1:e/<3 = +#+8% ± +#+95 =1:e/<3 = +#+$$ ± +#++4 16 Cyg A is ~ 0.04 de, richier than B Stellar parameters using automated EW measurement tools (AF?EEC A/C? L?EEC The “new” condensation temperature trend Slo"e: &.-. / 0.12 3 &0-2 de4 56& Nissen et al. 2017, in prep EW tools condensation trend (AF?EEC EW tools condensation trend A/C? EW tools condensation trend L?EEC Linear fits All fits show a positi.e Tcond trend The condensation temperature trend is a signature of the 16 Cyg ! roc"y core? ?tabilization of the Convecti.e Zone problem Anomalous 7i abundance for the age of 16 Cyg AI while 16 Cyg B seems normal Carlos et al# 9+16 The condensation temperature trend is a signature of the 16 Cyg ! roc"y core? 7i = +#&+ dex Be = 0#+& dex 9#$-5#+ Earth-like masses of Earth composition material C.idence of planet engulfment on 16 Cyg A (oes not e,clude the possibility of spectral signature of rocky core 0ucci Maia et al# 9+1$ formation.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages18 Page
-
File Size-