The Quantum Phase Transition Between a Superfluid and an Insulator: Applications to Trapped Ultracold Atoms and the Cuprate Superconductors

The Quantum Phase Transition Between a Superfluid and an Insulator: Applications to Trapped Ultracold Atoms and the Cuprate Superconductors

The quantum phase transition between a superfluid and an insulator: applications to trapped ultracold atoms and the cuprate superconductors. The quantum phase transition between a superfluid and an insulator: applications to trapped ultracold atoms and the cuprate superconductors. Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag Nikolic (Harvard) Subir Sachdev (Harvard) Krishnendu Sengupta (HRI, India) Talk online at http://sachdev.physics.harvard.edu OutlineOutline I. Bose-Einstein condensation and superfluidity. II. The superfluid-insulator quantum phase transition. III. The cuprate superconductors, and their proximity to a superfluid-insulator transition. IV. Landau-Ginzburg-Wilson theory of the superfluid- insulator transition. V. Beyond the LGW paradigm: continuous quantum transitions with multiple order parameters. VI. Experimental tests in the cuprates. I. Bose-Einstein condensation and superfluidity Superfluidity/superconductivity occur in: • liquid 4He • metals Hg, Al, Pb, Nb, Nb3Sn….. • liquid 3He • neutron stars • cuprates La2-xSrxCuO4, YBa2Cu3O6+y…. •M3C60 • ultracold trapped atoms •MgB2 The Bose-Einstein condensate: A macroscopic number of bosons occupy the lowest energy quantum state Such a condensate also forms in systems of fermions, where the bosons are Cooper pairs of fermions: ky Pair wavefunction in cuprates: Ψ =−kk22 ↑↓−↓↑ k ()xy() x S = 0 Velocity distribution function of ultracold 87Rb atoms M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science 269, 198 (1995) Superflow: The wavefunction of the condensate iθ r Ψ→Ψe ( ) Superfluid velocity v = ∇θ s m (for non-Galilean invariant superfluids, the co-efficient of ∇θ is modified) Excitations of the superfluid: Vortices Observation of quantized vortices in rotating 4He E.J. Yarmchuk, M.J.V. Gordon, and R.E. Packard, Observation of Stationary Vortex Arrays in Rotating Superfluid Helium, Phys. Rev. Lett. 43, 214 (1979). Observation of quantized vortices in rotating ultracold Na J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of Vortex Lattices in Bose-Einstein Condensates, Science 292, 476 (2001). Quantized fluxoids in YBa2Cu3O6+y J. C. Wynn, D. A. Bonn, B.W. Gardner, Yu-Ju Lin, Ruixing Liang, W. N. Hardy, J. R. Kirtley, and K. A. Moler, Phys. Rev. Lett. 87, 197002 (2001). OutlineOutline I. Bose-Einstein condensation and superfluidity. II. The superfluid-insulator quantum phase transition. III. The cuprate superconductors, and their proximity to a superfluid-insulator transition. IV. Landau-Ginzburg-Wilson theory of the superfluid- insulator transition. V. Beyond the LGW paradigm: continuous quantum transitions with multiple order parameters. VI. Experimental tests in the cuprates. II. The superfluid-insulator quantum phase transition Velocity distribution function of ultracold 87Rb atoms M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science 269, 198 (1995) Apply a periodic potential (standing laser beams) to trapped ultracold bosons (87Rb) M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Momentum distribution function of bosons Bragg reflections of condensate at reciprocal lattice vectors M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Superfluid-insulator quantum phase transition at T=0 V0=0Er V0=3Er V0=7Er V0=10Er V0=13Er V0=14Er V0=16Er V0=20Er Bosons at filling fraction f = 1 Weak interactions: superfluidity Strong interactions: Mott insulator which preserves all lattice symmetries M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Bosons at filling fraction f = 1 Ψ ≠ 0 Weak interactions: superfluidity Bosons at filling fraction f = 1 Ψ ≠ 0 Weak interactions: superfluidity Bosons at filling fraction f = 1 Ψ ≠ 0 Weak interactions: superfluidity Bosons at filling fraction f = 1 Ψ ≠ 0 Weak interactions: superfluidity Bosons at filling fraction f = 1 Ψ = 0 Strong interactions: insulator Bosons at filling fraction f = 1/2 Ψ ≠ 0 Weak interactions: superfluidity Bosons at filling fraction f = 1/2 Ψ ≠ 0 Weak interactions: superfluidity Bosons at filling fraction f = 1/2 Ψ ≠ 0 Weak interactions: superfluidity Bosons at filling fraction f = 1/2 Ψ ≠ 0 Weak interactions: superfluidity Bosons at filling fraction f = 1/2 Ψ ≠ 0 Weak interactions: superfluidity Bosons at filling fraction f = 1/2 Ψ = 0 Strong interactions: insulator Bosons at filling fraction f = 1/2 Ψ = 0 Strong interactions: insulator Bosons at filling fraction f = 1/2 Ψ = 0 Strong interactions: insulator Insulator has “density wave” order Bosons on the square lattice at filling fraction f=1/2 ? Insulator Charge density Superfluid wave (CDW) order Interactions between bosons Bosons on the square lattice at filling fraction f=1/2 ? Insulator Charge density Superfluid wave (CDW) order Interactions between bosons Bosons on the square lattice at filling fraction f=1/2 1 = ( + ) 2 ? Insulator Valence bond Superfluid solid (VBS) order Interactions between bosons N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). Bosons on the square lattice at filling fraction f=1/2 1 = ( + ) 2 ? Insulator Valence bond Superfluid solid (VBS) order Interactions between bosons N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). Bosons on the square lattice at filling fraction f=1/2 1 = ( + ) 2 ? Insulator Valence bond Superfluid solid (VBS) order Interactions between bosons N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). Bosons on the square lattice at filling fraction f=1/2 1 = ( + ) 2 ? Insulator Valence bond Superfluid solid (VBS) order Interactions between bosons N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). Bosons on the square lattice at filling fraction f=1/2 ? Insulator Valence bond Superfluid solid (VBS) order Interactions between bosons N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). Bosons on the square lattice at filling fraction f=1/2 ? Insulator Valence bond Superfluid solid (VBS) order Interactions between bosons N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). Bosons on the square lattice at filling fraction f=1/2 ? Insulator Valence bond Superfluid solid (VBS) order Interactions between bosons N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). Bosons on the square lattice at filling fraction f=1/2 ? Insulator Valence bond Superfluid solid (VBS) order Interactions between bosons N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). Bosons on the square lattice at filling fraction f=1/2 ? Insulator Valence bond Superfluid solid (VBS) order Interactions between bosons N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). OutlineOutline I. Bose-Einstein condensation and superfluidity. II. The superfluid-insulator quantum phase transition. III. The cuprate superconductors, and their proximity to a superfluid-insulator transition. IV. Landau-Ginzburg-Wilson theory of the superfluid- insulator transition. V. Beyond the LGW paradigm: continuous quantum transitions with multiple order parameters. VI. Experimental tests in the cuprates. III. The cuprate superconductors and their proximity to a superfluid-insulator transition La2CuO4 La O Cu La2CuO4 Mott insulator: square lattice antiferromagnet HJSS=∑ ij i ⋅ j <ij > La2-δSrδCuO4 Superfluid: condensate of paired holes S = 0 The cuprate superconductor Ca2-xNaxCuO2Cl2 T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M. Takano, H. Takagi, and J. C. Davis, Nature 430, 1001 (2004). The cuprate superconductor Ca2-xNaxCuO2Cl2 Evidence that holes can form an insulating state with period ≈ 4 modulation in the density T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M. Takano, H. Takagi, and J. C. Davis, Nature 430, 1001 (2004). Sr24-xCaxCu24O41 Nature 431, 1078 (2004); cond-mat/0604101 Resonant X-ray scattering evidence that the modulated state has one hole pair per unit cell. Sr24-xCaxCu24O41 Nature 431, 1078 (2004); cond-mat/0604101 Similar to the superfluid-insulator transition of bosons at fractional filling OutlineOutline I. Bose-Einstein condensation and superfluidity. II. The superfluid-insulator quantum phase transition. III. The cuprate superconductors, and their proximity to a superfluid-insulator transition. IV. Landau-Ginzburg-Wilson theory of the superfluid- insulator transition. V. Beyond the LGW paradigm: continuous quantum transitions with multiple order parameters. VI. Experimental tests in the cuprates. IV. Landau-Ginzburg-Wilson theory of the superfluid-insulator transition Bosons on the square lattice at filling fraction f=1/2 1 = ( + ) 2 ? Superfluid Insulator Valence bond Ψ≠0 solid (VBS) order Interactions between bosons N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). Insulating phases of bosons at filling fraction f = 1/2 1 = ( + ) 2 Charge density Valence bond Valence bond wave (CDW) order solid (VBS) order solid (VBS) order iQr. Can define a common CDW/VBS order using a generalized "density" ρρ(r ) = ∑ Qe Q All insulators have Ψ=0 and ρQ ≠0 for certain Q C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001) S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Landau-Ginzburg-Wilson approach to multiple order parameters: ⎡⎤ FF=Ψ+sc [ ] Fcharge ⎣⎦ρQ + Fint 24 Frusc []Ψ=11 Ψ + Ψ + 24 ⎡⎤ Frucharge ⎣⎦ρρQQ=+2 2 ρ Q + 2 2 Fvint =ΨρQ + Distinct symmetries of order parameters permit couplings only between their energy densities Predictions of LGW theory First order Ψ transition ρQ Superconductor Charge-ordered

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    86 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us