Chromosomes inside the cell Introduction to Algorithms 6.046J/18.401J • Eukaryote cell LECTURE 18 • Prokaryote Computational Biology cell • Bio intro: Regulatory Motifs • Combinatorial motif discovery - Median string finding • Probabilistic motif discovery - Expectation maximization • Comparative genomics Prof. Manolis Kellis April 15, 2008 DNA packaging DNA: The double helix • Why packaging • The most noble molecule of our time – DNA is very long – Cell is very small • Compression – Chromosome is 50,000 times shorter than extended DNA • Using the DNA – Before a piece of DNA is used for anything, this compact structure must open locally ATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATA ATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATA ATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTC ATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTC AATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTC AATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTC GCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACT GCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACT TTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATG TTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATG AATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAA AATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAA GCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAAT GCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAAT TAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAA TAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAA TAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGG CTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGG TTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGAT TTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGAT GATATGCTTTGCGCCGTCAAAGTTTTGAACGAGAAAAATCCATCCATTACCTTAATAAATGCTGATCCCAAATTTGCTCAAAGGAA TGATATGCTTTGCGCCGTCAAAGTTTTGAACGAGAAAAATCCATCCATTACCTTAATAAATGCTGATCCCAAATTTGCTCAAAGGAA CGATTTGCCGTTGGACGGTTCTTATGTCACAATTGATCCTTCTGTGTCGGACTGGTCTAATTACTTTAAATGTGGTCTCCATGTTG TCGATTTGCCGTTGGACGGTTCTTATGTCACAATTGATCCTTCTGTGTCGGACTGGTCTAATTACTTTAAATGTGGTCTCCATGTTG ACTCTTTTCTAAAGAAACTTGCACCGGAAAGGTTTGCCAGTGCTCCTCTGGCCGGGCTGCAAGTCTTCTGTGAGGGTGATGTACCA CACTCTTTTCTAAAGAAACTTGCACCGGAAAGGTTTGCCAGTGCTCCTCTGGCCGGGCTGCAAGTCTTCTGTGAGGGTGATGTACCGenes A GGCAGTGGATTGTCTTCTTCGGCCGCATTCATTTGTGCCGTTGCTTTAGCTGTTGTTAAAGCGAATATGGGCCCTGGTTATCATAT TGGCAGTGGATTGTCTTCTTCGGCCGCATTCATTTGTGCCGTTGCTTTAGCTGTTGTTAAAGCGAATATGGGCCCTGGTTATCATARegulatory motifs T CAAGCAAAATTTAATGCGTATTACGGTCGTTGCAGAACATTATGTTGGTGTTAACAATGGCGGTATGGATCAGGCTGCCTCTGTTT CCAAGCAAAATTTAATGCGTATTACGGTCGTTGCAGAACATTATGTTGGTGTTAACAATGGCGGTATGGATCAGGCTGCCTCTGTTT GGTGAGGAAGATCATGCTCTATACGTTGAGTTCAAACCGCAGTTGAAGGCTACTCCGTTTAAATTTCCGCAATTAAAAAACCATGAA GGTGAGGAAGATCATGCTCTATACGTTGAGTTCAAACCGCAGTTGAAGGCTACTCCGTTTAAATTTCCGCAATTAAAAAACCATGAEncode A AGCTTTGTTATTGCGAACACCCTTGTTGTATCTAACAAGTTTGAAACCGCCCCAACCAACTATAATTTAAGAGTGGTAGAAGTCAC TAGCTTTGTTATTGCGAACACCCTTGTTGTATCTAACAAGTTTGAAACCGCCCCAACCAACTATAATTTAAGAGTGGTAGAAGTCAControl C AGCTGCAAATGTTTTAGCTGCCACGTACGGTGTTGTTTTACTTTCTGGAAAAGAAGGATCGAGCACGAATAAAGGTAATCTAAGAG CAGCTGCAAATGTTTTAGCTGCCACGTACGGTGTTGTTTTACTTTCTGGAAAAGAAGGATCGAGCACGAATAAAGGTAATCTAAGAproteins G TCATGAACGTTTATTATGCCAGATATCACAACATTTCCACACCCTGGAACGGCGATATTGAATCCGGCATCGAACGGTTAACAAAG TTCATGAACGTTTATTATGCCAGATATCACAACATTTCCACACCCTGGAACGGCGATATTGAATCCGGCATCGAACGGTTAACAAAgene expression G GCTAGTACTAGTTGAAGAGTCTCTCGCCAATAAGAAACAGGGCTTTAGTGTTGACGATGTCGCACAATCCTTGAATTGTTCTCGCGA GCTAGTACTAGTTGAAGAGTCTCTCGCCAATAAGAAACAGGGCTTTAGTGTTGACGATGTCGCACAATCCTTGAATTGTTCTCGCGA AATTCACAAGAGACTACTTAACAACATCTCCAGTGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAAT AATTCACAAGAGACTACTTAACAACATCTCCAGTGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAAT TAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATG TTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATG GAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATC CGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATC ATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAA ATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAA GAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCA GAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCA ATTGGGCAGCTGTCTATATGAATTATAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACT ATTGGGCAGCTGTCTATATGAATTATAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACT AGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATA AGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATA GTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGG GTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGG ACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAG ACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAG TTGGCAAGTTGCCAACTGACGAGATGCAGTAAAAAGAGATTGCCGTCTTGAAACTTTTTGTCCTTTTTTTTTTCCGGGGACTCTAC TTGGCAAGTTGCCAACTGACGAGATGCAGTAAAAAGAGATTGCCGTCTTGAAACTTTTTGTCCTTTTTTTTTTCCGGGGACTCTAC GAACCCTTTGTCCTACTGATTAATTTTGTACTGAATTTGGACAATTCAGATTTTAGTAGACAAGCGCGAGGAGGAAAAGAAATGACA GAACCCTTTGTCCTACTGATTAATTTTGTACTGAATTTGGACAATTCAGATTTTAGTAGACAAGCGCGAGGAGGAAAAGAAATGACA AAAATTCCGATGGACAAGAAGATAGGAAAAAAAAAAAGCTTTCACCGATTTCCTAGACCGGAAAAAAGTCGTATGACATCAGAATGA AAAATTCCGATGGACAAGAAGATAGGAAAAAAAAAAAGCTTTCACCGATTTCCTAGACCGGAAAAAAGTCGTATGACATCAGAATGA AATTTTCAAGTTAGACAAGGACAAAATCAGGACAAATTGTAAAGATATAATAAACTATTTGATTCAGCGCCAATTTGCCCTTTTCCA AATTTTCAAGTTAGACAAGGACAAAATCAGGACAAATTGTAAAGATATAATAAACTATTTGATTCAGCGCCAATTTGCCCTTTTCCA TCCATTAAATCTCTGTTCTCTCTTACTTATATGATGATTAGGTATCATCTGTATAAAACTCCTTTCTTAATTTCACTCTAAAGCAT TCCATTAAATCTCTGTTCTCTCTTACTTATATGATGATTAGGTATCATCTGTATAAAACTCCTTTCTTAATTTCACTCTAAAGCAT CCATAGAGAAGATCTTTCGGTTCGAAGACATTCCTACGCATAATAAGAATAGGAGGGAATAATGCCAGACAATCTATCATTACATT CCATAGAGAAGATCTTTCGGTTCGAAGACATTCCTACGCATAATAAGAATAGGAGGGAATAATGCCAGACAATCTATCATTACATT AGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAA AGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAA GTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATA GTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATA GCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACA GCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACA AGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATC CAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATC ACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGT CACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGT GTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCT GTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCT The Central Dogma of Biology Challenges in Computational Biology DNA makes RNA makes Protein 4 Genome Assembly 5 Regulatory motif discovery 1 Gene Finding DNA Inheritance 2 Sequence alignment 6 Comparative Genomics TCATGCTAT TCGTGATAA 3 Database lookup TGAGGATAT 7 Evolutionary Theory TTATCATAT TTATGATTT Messages 8 Gene expression analysis (and much more) RNA transcript 9Cluster discovery 10 Gibbs sampling 11 Protein network analysis 12 Metabolic modeling Function 13 Emerging network properties Challenges in Computational Biology The regulatory code Enhancer regions Promoter motifs Splicing signals Motifs at RNA level 4 Genome Assembly Errα 5’-UTR 3’-UTR 5 Regulatory motif discovery 1 Gene Finding DNA human CTCTTAATGGTACACGTTCTGCCT----AAGTAGCCTAGACGCTCCCGTGCGCCC-GGGG 2 dog CTCTTA-CGGGGCACATTCTGCTTTCAACAGTGGGGCAGACGGTCCCGCGCGCCCCAAGG Sequence alignment mouse GTCTTAGGAGGCT-CGATCGCC---------------------GCCTGCATTATT----- rat GTCTTAGTTGGCCACGACCTGC---------------------TCATGCATAATT----- 6 Comparative Genomics ***** * * * * * * TCATGCTAT Errα TCGTGATAA 3 Database lookup TGAGGATAT human CGGGTAGGCCTGGCCGAAAATCTCTCCCGCGCGCCTGACCTTGGGTTGCCCCAGCCAGGCCGGGTAGGCCTGGCCGAAAATCTCTCCCGCGCGCCTGACCTTGTGACCTTGGGGGTTGCCCCAGCCAGGC 7 Evolutionary Theory TTATCATAT TTATGATTT dog CAGGC---CCGGGCTGCAGACCTGCCCTGAGGGAATGACCTTGGGCGGCCGCAGCGGGGCCAGGC---CCGGGCTGCAGACCTGCCCTGAGGGAATGACCTTGTGACCTTGGGGGCGGCCGCAGCGGGGC mouse --------------CACAAGCCTGTGGCGCGC-CGTGACCTTGGGCTGCCCCAGGCGGGC--------------CACAAGCCTGTGGCGCGC-CGTGACCTTGTGACCTTGGGGGCTGCCCCAGGCGGGC rat --------------CACAAGTTTCTC---TGC-CCTGACCTTGGGTTGCCCCAGGCGAG---------------CACAAGTTTCTC---TGC-CCTGACCTTGTGACCTTGGGGGTTGCCCCAGGCGAG- 8 Gene expression analysis * *
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-