Title The physical space model of the icosahedral quasicrystal Author(s) Buganski, Ireneusz Jozef Citation 北海道大学. 博士(工学) 甲第14162号 Issue Date 2020-06-30 DOI 10.14943/doctoral.k14162 Doc URL http://hdl.handle.net/2115/78930 Type theses (doctoral) File Information Ireneusz_Jozef_Buganski.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP The physical space model of the icosahedral quasicrystal 正二十面体準結晶の物理空間モデル Ireneusz Jozef Buganski Crystal Physics Laboratory Division of Applied Physics Graduate School of Engineering Hokkaido University Sapporo, Japan Table of Contents Acknowledgments ...................................................................................................................... 4 Abstract....................................................................................................................................... 5 1. Introduction ......................................................................................................................... 7 1.1 The discovery of quasicrystals .................................................................................... 8 1.2 The definition of quasicrystal .................................................................................... 10 1.3 Quasicrystalline strucutres ......................................................................................... 12 1.3.1 The icosahedral quasicrystal ................................................................................. 12 1.3.2 The decagonal quasicrystal ................................................................................... 15 1.3.3 The Octagonal quasicrystal .................................................................................. 16 1.3.4 The dodecagonal quasicrystal ............................................................................... 16 1.4 Motivation and aim of the thesis ............................................................................... 17 2. The mathematical description of quasicrystals .................................................................. 19 2.1 The higher-dimensional approach ............................................................................. 19 2.2 The Average Unit Cell approach ............................................................................... 24 2.3 The Correspondence between the AUC and the nD approach .................................. 29 3. The Ammann-Kramer-Neri tiling ...................................................................................... 33 3.1 The reciprocal and direct space of the icosahedral quasicrystal ................................ 36 3.2 The projection method for the AKNt ........................................................................ 39 3.3 The structure factor.................................................................................................... 45 3.3.1 The geometric structure factor .............................................................................. 46 3.3.2 The SOF and site occupancy ................................................................................ 49 3.3.3 Phason and phonon disorder ................................................................................. 51 4. The structure of the Bergman ZnMgTm icoshaedral quasicrystal .................................... 56 4.1 The review on the Bergman iQC ............................................................................... 56 4.2 Experimental details .................................................................................................. 58 4.3 The ab initio structure solution .................................................................................. 58 4.4 The structure model ................................................................................................... 65 4.5 The structure refinement ............................................................................................ 67 4.6 The RTH covering ..................................................................................................... 69 4.7 The higher-dimensional model .................................................................................. 73 4.8 Discussion ................................................................................................................. 76 4.8.1 Tiling approach vs cluster model .......................................................................... 76 4.8.2 Rare-Earth distribution ......................................................................................... 76 4.8.3 Atomic ADPs and Disorder .................................................................................. 80 5. The local structure of the ZnMgHf F-type quasicrystal .................................................... 83 5.1 Introduction ............................................................................................................... 83 5.2 Synthesis .................................................................................................................... 84 5.3 Characterization ......................................................................................................... 85 5.4 The local structure ..................................................................................................... 88 6. Summary ........................................................................................................................... 93 6.1 ZnMgTm P-type iQC ................................................................................................ 93 6.2 ZnMgHf F-type iQC .................................................................................................. 94 Supporting information............................................................................................................. 96 References .............................................................................................................................. 106 List of Conference Presentations ............................................................................................ 121 Prizes ...................................................................................................................................... 123 Acknowledgments I am very much in debt of Assoc. Prof. Hiroyuki Takakura who hosted me in Japan throughout my Ph.D. course at Hokkaido University and supervised my work. He was always there to explain to me the unknown and patiently correct me in the moments of flaws. This work could not be done without his support. I am sincerely grateful to Prof. Janusz Wolny for inviting me to his laboratory when I was still an undergraduate student and taught me the principles of the quasicrystals. I would like to acknowledge Mr. Y. Kaneko for his help in single crystal growth of ZnMgTm and Dr. T. Matsumoto, Rigaku oxford diffraction, for his help in single-crystal X-ray intensity data collection, the researchers form SOLEIL synchrotron facility who were kind to help with the X-ray diffraction measurement of the ZnMgHf quasicrystal. Special thanks to Kotoba Toyonaga for a helping hand in all the in-house experiments and being my roommate at the university office. Best regards to all members of our small Polish Community in Sapporo for guiding me through Japan and help to explore it like I could never without them. I am grateful to Patrycja Świeczkowska for unbounded support. Abstract The scientific interest in the atomic structure of quasicrystals (QCs), has never faded since Dan Shechtman’s discovery in 1982. So far, only about twenty QCs were analyzed quantitatively, which signifies how difficult the process of the structure analysis is. A lot of research has been dedicated to icosahedral (i) QCs in a Tsai-type family since the first binary Cd-Yb QC was discovered. In 2007, a highly-accurate atomic structure model of this QC, based on the cluster-approach, was developed. Since then, the model has served as a structural template for any other QC in this family. Such a template, however, does not exist for the Bergman family, which are formed mainly in the Zn-Mg-R (R = rare earth) systems. The discovery of Zn-Mg-R iQCs arose a great interest in their magnetic properties because well-localized magnetic moments are carried by the 4f electrons of the R ions which arrange quasiperiodically in the structure. Numerous measurements of magnetic moments show spin-glass-like behavior in a low-temperature regime. In order to explain the measured magnetic properties, a detailed atomic structure model of Bergman QC is needed and such a challenge was taken in this thesis. In chapter one a thorough introduction to the crystallography of QCs is given. It starts with historical background about the first observation of structures with a translational symmetry being broken. A whole subsection is dedicated to the definition of QCs as there is still a nomenclature confusion, even among scientists working in the field. The chapter ends with a summary about every of four known types of QCs with forbidden symmetries and the motivation of the thesis is explained. In chapter two the mathematical foundations of the crystallography of QCs are given. Two methods that were developed to represent mathematically the quasiperiodic structures are described in detail: the higher-dimensional approach, where the set of quasiperiodic points is lifted to 푛D space, with 푛 > 3, for 3D structures and the Average Unit Cell approach (AUC). Those two approaches are shown to be complementary
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages124 Page
-
File Size-