Direct Demonstration of Topological Stability of Magnetic Skyrmions Via

Direct Demonstration of Topological Stability of Magnetic Skyrmions Via

1 Direct Demonstration of Topological Stability of Magnetic Skyrmions via 2 Topology Manipulation 3 Soong-Geun Je,†,‡,§,|| Hee-Sung Han,¶ Se Kwon Kim,** Sergio A. Montoya,†† Weilun Chao,† "#- 4 Sun Hong,‡‡ $ri% $. &ullerton,§§,|||| Ki-Suk 'ee,¶ Kyung-Jin 'ee,‡‡,¶¶ Mi-(oung Im,†,‡,¶,* and 5 Jung-Il Hong‡,* 6 † enter for X-ray O-ti%., Lawrence Ber#eley National Laboratory, Ber#eley, CA 94720, USA. 7 ‡8epartment of Emerging Material. S%ience, DGIS9, Daegu 42988, Korea. 8 § enter for Spin-,rbitroni% Material., Korea Uni;ersity, Seoul 02841, Korea. 9 ||8epartment of P!y.i%., Chonnam National Uni;ersity, Gwang>u 61186, Korea 10 ¶S%hool of Material. S%ience and $ngineering, 7l.an 0ational Institute of S%ience and 11 9e%hnology, Ul.an 44919, Korea. 12 **8epartment of P!y.i%. and A.tronomy, Uni;ersity of Mi..ouri, Columbia, M, 65211, USA. 13 ††Spa%e and Na;al War*are Sy.tem. Center Pa%iA%, San Diego, CA 92152, USA. 14 ‡‡K7-KIS9 Graduate S%hool of on;erging S%ience and 9e%hnology, Korea 7ni;ersity, Seoul 15 02841, Korea. 16 §§ enter *or Memory and Be%ording Be.ear%h, 7ni;ersity of ali*ornia–San 8iego, 'a Jolla, 17 A 92093, USA. 18 ||||8epartment of Ele%tri%al and Computer Engineering, 7ni;ersity of ali*ornia–San 8iego, La 19 Jolla, CA 92093, USA. 20 ¶¶8epartment of Material. S%ience and Engineering, Korea Uni;ersity, Seoul 02841, Korea. 21 *e-mailE mimFlbl.go;G >ihong@)gi.t.a%.kr 1 1 Abstract 2 9opologi%al prote%tion pre%lude. a continuous de*ormation between topologi%ally ineHui;alent 3 %onfigurations in a %ontinuum. Moti;ate) 1y thi. %once-t, magneti% .#yrmions, topologi%ally 4 nontrivial .pin texture., are expe%te) to exhibit the topologi%al .ta1ility, there1y offering a 5 prospe%t a. a nanometer-.%ale non-;olatile information %arrier. In real material., howe;er, 6 atomi% .pins are %onfigure) a. not %ontinuous but di.%rete di.tribution, whi%! rai.e. a 7 *undamental Hue.tion i* the topologi%al .tability i. indee) pre.er;e) *or real magneti% 8 .#yrmions. Answering t!i. Hue.tion ne%e..itate. a dire%t %ompari.on between topologi%ally 9 nontrivial and trivial .pin texture., but the dire%t %ompari.on in one .ample under the .ame 10 magneti% Ael). ha. been %hallenging. Here we report how to .ele%ti;ely a%hie;e either a 11 .#yrmion .tate or a topologi%ally trivial bubble .tate in a .ingle .pe%imen and there1y 12 experimentally .how how robust t!e .#yrmion .tru%ture i. in %ompari.on wit! the bubble.. 13 We demonstrate that topologi%ally nontrivial magneti% .#yrmions .how longer li*etime. than 14 trivial bubble .tructure., evi)encing the topologi%al .tability in a real di.%rete .y.tem. ,ur 15 wor# %orroborate. the -!y.i%al importance of the topology in the magneti% material., whi%! 16 ha. hitherto been .ugge.te) 1y mathemati%al argument., provi)ing an important .te- towar). 17 e;er-dense and more-.table magneti% de;i%e.. 18 Keywor).E topology manipulation, topologi%al .tability, topologi%al prote%tion, magneti% 19 .#yrmion, magneti% bubble, li*etime, FeG) 20 2 1 9opology<,5 %onstitute. profound viewpoint. in modern -!y.i%. on re;ealing ;arious robust 2 .tate. exi.ting in many -!y.i%al .y.tem. including topologi%al insulators,3,3 ultra%ol) atom.,@ 3 topologi%al insulator la.ers? and topologi%al me%hani%al metamaterial..4 9opology ha. al.o 4 been .uc%e..*ul in repre.enting ;arious magneti% phenomena.1,8-<: In a %ontinuum de.%ri-tion 5 of magneti% .y.tem., the topologi%al prote%tion mean. t!at a %ontinuous de*ormation between 6 .pin .tructure. wit! diJerent topologie. i. not allowe).1,5 9hi. im-lie. eI%e-tional .tability of 7 .pin texture. with nontrivial topology again.t colla-.e to a uni*orm spin configuration. 8 A %om-elling eIam-le of .uc! topologi%al .-in .tru%ture. i. t!e magneti% .#yrmion. It i. a 9 .wirling .pin .tructure K&igure 1aL pos.e..ing a HuantiMe) topologi%al %harge deAne) 1y < 10 = = m Q 3 π ∫ m ∙ ( ∂x m× ∂y m ) dxdy <, whi%! mea.ure. how many time. winds t!e unit .phere 11 within a %lose) .ur*a%e, where m i. the unit ;e%tor of magnetiMation. In term. of topologi%al 12 %harge, the .#yrmion .tru%ture i. topologi%ally di.tinct from a uni*orm *erromagneti% .tate 13 with Q=6, hence chara%teriMed a. a topologi%ally nontrivial s-in texture. 14 It i. anti%i-ate) that magneti% s#yrmions wit! eI%e-tionally .mall .iMe. remain robust and can 15 be dri;en 1y ele%tri% %urrent. ea.ily without being interru-te) or annihilate) 1y .y.tem 16 di.orders suc! a. structural de*e%t..<2,5: There*ore, it i. considere) a. a promi.ing candi)ate for 17 information %arrier in the appli%ations *or ultrahigh density data .torage,<9,20,52 logi%,D6 and 18 neuromor-!i%D<,D5 te%hnologie.. A. the .uc%e..*ul im-lementation of .#yrmion-ba.e) 19 appli%ations %rucially relie. on the retention of .#yrmion .tructure., the topologi%ally 20 prote%ted property of the s#yrmions i. the most important prereHui.ite. 21 In real material., howe;er, magneti% moment. are localiMe) on atom. in a di.%rete latti%e that 22 the %olla-.e of magneti% .#yrmions i. plausible 1y o;er%oming a Anite energy barrier in an 23 atomi.ti% length s%ale, where the topologi%al argument i. nulliAe). Thi. reali.ti% situation thus 24 naturally rai.e. *undamentally and te%hnologi%ally important Hue.tionsE ". the topologi%al 25 prote%tion .till a viable %once-t to guarantee the .#yrmion .tability and how .trong i. the 26 %onstraint in t!e real di.%rete sy.temN 27 onsiderable eJort. ha;e been de;ote) to addre..ing the i..ue. on the .#yrmion .ta1ility in a 28 real .y.tem, but they .till remain %ontro;ersial.DD 9heoreti%al wor#. !a;e .ugge.te) that there 29 are alternati;e .#yrmion de%ay pat!. along whi%! the energy barrier i. lower than that of 3 1 atomi.ti%-.hrinking of .#yrmions34-D4 or the entropy ha. an important role in the .#yrmion 2 li*etime.D7-D2 A *ew experimental wor#.30-35 ha;e dealt wit! the .#yrmion .tability 1y 3 mea.uring t!e li*etime. Howe;er, the la%# of dire%t experimental %ompari.on of topologi%ally 4 trivial and nontrivial .pin .tru%ture. under the identi%al environment .uc! a. within the .ame 5 .pe%imen lea;e. the i..ue of ambiguity be%ause the .#yrmion li*etime i. highly dependent not 6 only on the topologi%al eJe%t but al.o on other fa%tors including material propertie.. 7 A re-re.entati;e of the topologi%ally trivial %ounterpart to the .#yrmion i. a bubble of Q=6 8 a. .%hemati%ally depi%te) in &igure <1. 9he boundary of a bubble %on.i.t. of a pair of hal* 9 %ir%le. wit! winding .pins in the opposite dire%tion and the two hal* %ir%le. are >oine) 1y 10 Bloc! line.. Since it. topologi%al %!arge Q eHual. to 0, the topologi%al eJe%t doe. not 11 parti%ipate in t!e annihilation of the bubble. 12 13 FIG. 1. Schematic illustration of a topologically nontrivial skyrmion and a topologically trivial bubble. KaL 14 /loch-type s#yrmion with |Q∨¿<. (1L Bubble with Q=6. The B' re*er. to the Bloch line. 15 16 9he experimental diO%ultie. hindering a thorough a..e..ment of the topologi%al eJe%t to the 17 .#yrmion .ta1ility i. twofol). &irstly, experimental mea.urement of .ub-100 nm .pin 18 .tru%ture. wit! a .uffi%iently high temporal re.olution to dete%t t!e .#yrmion li*etime i. 19 te%hni%ally a %hallenging i..ue. Se%ondly and more importantly, tailoring the topology,3D,33 20 there1y .ele%ti;ely preparing either .#yrmions or bubble. in the .ame material, i. another 21 %hallenging i..ue that ha. not been *ully explore). A mea.urable -!y.i%al Huantity to e.timate 22 the topologi%al eJe%t i. the li*etime, whi%! howe;er ;arie. dra.ti%ally depending on material 23 propertie.. 9here*ore, re.olving the .e%ond i..ue i. parti%ularly important to dire%tly %ompare 24 the stabilitie. of topologi%ally nontrivial and trivial stru%ture. on an eHual footing. 25 ,;er%oming the two %!allenge. mentione) abo;e, we experimentally demonstrate the .tability 26 of magneti% .#yrmions roote) in topology. /y %hoosing diJerent magneti% Ael) pathway., we 27 are able to .ele%ti;ely rea%! eit!er a magneti% .#yrmion .tate or a bubble .tate in the .ame 4 1 .pe%imen under the .ame magneti% Ael) .trength, provi)ing a ;ersatile route towar). the 2 topology manipulation and *air %ompari.on of the topologi%al eJe%t. 9he li*etime. of bot! 3 .#yrmions and bubble. are t!en .tudie) u.ing t!e *ull-fiel) transmi..ion .oft I-ray 4 mi%ros%opy KM9+ML %ombine) wit! pul.e) magneti% Ael). of ;arious durations to enhance 5 the time re.olution. We And that magneti% .#yrmions exhi1it muc! longer li*etime than 6 bubble.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us